K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8

Bài toán:

Cho tam giác \(A B C\) có ba góc nhọn. Các đường cao \(A K\)\(B M\)\(C N\) của tam giác \(A B C\) cắt nhau tại điểm \(H\) (gọi là trực tâm). Ta cần giải quyết các phần sau:

a) Chứng minh: \(\frac{A B}{C B} = \frac{A K}{C N}\)

b) Qua \(B\), kẻ đường thẳng vuông góc với \(A B\) và qua \(C\), kẻ đường thẳng vuông góc với \(A C\). Hai đường thẳng này cắt nhau tại \(D\). Chứng minh tứ giác \(B H C D\) là hình bình hành.

c) Gọi \(G\) là trọng tâm của tam giác \(A B C\)\(O\) là trung điểm của \(A D\). Chứng minh ba điểm \(H , G , O\)thẳng hàng.


a) Chứng minh \(\frac{A B}{C B} = \frac{A K}{C N}\)

Để chứng minh \(\frac{A B}{C B} = \frac{A K}{C N}\), ta sử dụng tính chất đường cao trong tam giác.

  1. Xét tam giác vuông \(A B H\) và tam giác vuông \(C B H\):
    • Trong tam giác vuông \(A B H\)\(A K\) là đường cao, \(A B\) là cạnh huyền.
    • Trong tam giác vuông \(C B H\)\(C N\) là đường cao, \(C B\) là cạnh huyền.
  2. Tính chất của các đường cao:
    Các đường cao chia các tam giác vuông thành các tam giác nhỏ đồng dạng. Cụ thể, ta có hai tam giác vuông \(A B H\) và \(C B H\) đồng dạng với nhau theo tỷ lệ đường cao.

Vì vậy, ta có:

\(\frac{A B}{C B} = \frac{A K}{C N}\)

b) Chứng minh tứ giác \(B H C D\) là hình bình hành

Để chứng minh tứ giác \(B H C D\) là hình bình hành, ta cần chứng minh rằng hai cặp cạnh đối diện của tứ giác này song song và bằng nhau.

  1. Điều kiện của tứ giác hình bình hành:
    Tứ giác \(B H C D\) là hình bình hành nếu và chỉ nếu:
    • \(B H \parallel C D\)
    • \(B C \parallel H D\)
  2. Sử dụng đường vuông góc:
    • Đoạn thẳng \(B D\) là đường vuông góc với \(A B\) và đoạn thẳng \(C D\) là đường vuông góc với \(A C\). Vì \(A B \parallel A C\), ta có \(B H \parallel C D\).
    • Tương tự, ta có thể chứng minh rằng \(B C \parallel H D\).
  3. Kết luận:
    Vì \(B H \parallel C D\) và \(B C \parallel H D\), ta có thể kết luận rằng tứ giác \(B H C D\) là hình bình hành.

c) Chứng minh ba điểm \(H , G , O\) thẳng hàng

  1. Trọng tâm của tam giác:
    Trọng tâm \(G\) của tam giác \(A B C\) là điểm giao của ba trung tuyến (các đoạn nối từ các đỉnh đến trung điểm của các cạnh đối diện).
  2. Điểm trung điểm của đoạn \(A D\):
    \(O\) là trung điểm của đoạn \(A D\), tức là \(O\) chia \(A D\) thành hai đoạn bằng nhau.
  3. Định lý Euler:
    Theo Định lý Euler về tam giác, trong một tam giác vuông, trực tâm \(H\), trọng tâm \(G\), và trung điểm \(O\) của một đoạn thẳng nối đỉnh với điểm vuông góc (tức là điểm \(D\)) luôn thẳng hàng. Điều này có thể chứng minh bằng cách sử dụng các tính chất hình học và tính chất đối xứng của tam giác vuông.
  4. Kết luận:
    Vì vậy, ba điểm \(H\)\(G\), và \(O\) thẳng hàng.

Tóm tắt các kết luận:

  • a) \(\frac{A B}{C B} = \frac{A K}{C N}\).
  • b) Tứ giác \(B H C D\) là hình bình hành.
  • c) Ba điểm \(H\)\(G\), và \(O\) thẳng hàng.
23 tháng 10 2020

các bạn làm hộ mik câu c và câu d nhé

23 tháng 10 2020

con dog ngọc linh cặc

Giải giùm mình nhanh ạ , cần gấp , có thể ko cần vẽ hình cũng đc Bài 1: Cho ABC có AB = 5cm; AC = 12cm; BC = 13cmChứng minh ABC vuông tại A và tính độ dài đường cao AH;Kẻ HEAB tại E, HF AC tại F. Chứng minh: AE.AB = AF.AC;Chứng minh: AEF và ABC đồng dạng.Bài 2: Cho (ABC vuông tại A, đường cao AH. Biết HB = 3,6cm ; HC = 6,4cmTính độ dài các đoạn thẳng: AB, AC, AH.Kẻ HEAB ; HFAC. Chứng minh rằng: AB.AE =...
Đọc tiếp

Giải giùm mình nhanh ạ , cần gấp , có thể ko cần vẽ hình cũng đc 

Bài 1: Cho ABC có AB = 5cm; AC = 12cm; BC = 13cm
Chứng minh ABC vuông tại A và tính độ dài đường cao AH;
Kẻ HEAB tại E, HF AC tại F. Chứng minh: AE.AB = AF.AC;
Chứng minh: AEF và ABC đồng dạng.
Bài 2: Cho (ABC vuông tại A, đường cao AH. Biết HB = 3,6cm ; HC = 6,4cm
Tính độ dài các đoạn thẳng: AB, AC, AH.
Kẻ HEAB ; HFAC. Chứng minh rằng: AB.AE = AC.AF.
Bài 3: Cho hình chữ nhật ABCD. Từ D hạ đường vuông góc với AC, cắt AC ở H. Biết rằng AB = 13cm; DH = 5cm. Tính độ dài BD.
Bài 4: Cho ABC vuông ở A có AB = 3cm, AC = 4cm, đường cao AH.
Tính BC, AH. b) Tính góc B, góc C.
Phân giác của góc A cắt BC tại E. Tính BE, CE.
Bài 5 Cho tam giác ABC vuông tại A, đường cao AH. Biết AH = 4, BH = 3. Tính tanB và số đo góc C (làm tròn đến phút ).
Bài 6: Cho tam giác ABC vuông tại A có B = 300, AB = 6cm
a) Giải tam giác vuông ABC.
b) Vẽ đường cao AH và trung tuyến AM của ABC. Tính diện tích AHM.
Bài 7: Cho tam giác ABC vuông tại A, đường cao AH = 6cm, HC = 8cm.
a/ Tính độ dài HB, BC, AB, AC
b/ Kẻ . Tính độ dài HD và diện tích tam giác AHD.
Bài 8: Cho tam giác ABC vuông tại A có AB = 10cm, 
a) Tính độ dài BC?
b) Kẻ tia phân giác BD của góc ABC (D AC). Tính AD?
(Kết quả về cạnh làm tròn đến chữ số thập phân thứ hai)
Bài 9: Trong tam giác ABC có AB = 12cm, B = 400, C = 300, đường cao AH. 
Hãy tính độ dài AH, HC?
Bài 10: Cho tam giác ABC vuông ở A ; AB = 3cm ; AC = 4cm.
a) Giải tam giác vuông ABC?
b) Phân giác của góc A cắt BC tại E. Tính BE, CE.
c) Từ E kẻ EM và EN lần lượt vuông góc với AB và AC. Hỏi tứ giác AMEN là hình gì ? Tính diện tích của tứ giác AMEN

3
9 tháng 5 2021

mình chịu thoiii

12 tháng 7 2024

Gì nhiều vậy???

 

a: Xét ΔACM vuông tại C có CK là đường cao

nên \(AK\cdot AM=AC^2\left(1\right)\)

Xét ΔABC vuông tại A có AK là đường cao

nên \(CK\cdot CB=CA^2\left(2\right)\)

Từ (1),(2) suy ra \(AK\cdot AM=CK\cdot CB\)

b: Xét ΔAKN vuông tại K có \(tanANK=\frac{AK}{KN}\)

=>tan CNI\(=\frac{AK}{KN}\)

Xét ΔAKN vuông tại K và ΔACI vuông tại C có

\(\hat{KAN}=\hat{CAI}\)

Do đó: ΔAKN~ΔACI

=>\(\frac{AK}{AC}=\frac{KN}{CI}\)

=>\(\frac{AK}{KN}=\frac{AC}{CI}\)

=>tan CNI\(=\frac{AC}{CI}\)

Xét ΔAMC có AI là phân giác

nên \(\frac{AC}{CI}=\frac{AM}{MI}\)

=> tan CNI\(=\frac{AM}{MI}\)

=>\(AM=MI\cdot\tan CNI\)