K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC và ΔCBD có

BA/BC=BC/BD

góc B chung

Do đo:ΔABC\(\sim\)ΔCBD

b: Ta có: ΔABC\(\sim\)ΔCBD

nên AC/CD=BC/BD

=>3.75/CD=4,5/6,75=2/3

=>CD=5,625(cm)

Sửa đề: AC=7,5

a: Sửa đề: ΔABC đồng dạng với ΔCBD
Xét ΔABC và ΔCBD có

BA/BC=CB/BD

góc B chung

=>ΔABC đồng dạng với ΔCBD

b: ΔABC đồng dạng với ΔCBD
=>AC/CD=AB/CB

=>7,5/CD=6/9=2/3

=>CD=11,25(cm)

 

4 tháng 4 2021

(Hình bạn tự vẽ)

a) Ta có: \(\dfrac{AB}{BC}=\dfrac{6}{9}=\dfrac{2}{3}\)

\(\dfrac{BC}{BD}=\dfrac{9}{6+7,5}=\dfrac{2}{3}\)

Xét ΔABC và ΔCBD có:

Góc B chung 

\(\dfrac{AB}{BC}=\dfrac{BC}{BD}\)\(\left(=\dfrac{2}{3}\right)\)

⇒ΔABC ∼ ΔCBD (c.g.c)

b) Theo câu a ta có: ΔABC ∼ ΔCBD 

⇒ \(\dfrac{AB}{AC}=\dfrac{CB}{CD}\)\(=\dfrac{6}{7,5}=\dfrac{9}{CD}\)

⇒ \(CD=\dfrac{7,5.9}{6}\)\(=\dfrac{45}{4}=11,25\)

c) Theo câu a ta có: ΔABC ∼ ΔCBD 

⇒ Góc BAC = góc BCD        (1)

Xét ΔBCD có: \(\dfrac{BA}{AD}=\dfrac{BC}{CD}\)

Hay \(\dfrac{6}{7,5}=\dfrac{9}{11,25}\)\(=\dfrac{4}{5}\)           

⇒ CA là phân giác góc BCD

⇒ Góc ACB= góc ACD          (2)

Từ (1), (2) ⇒ góc BAC = 2 góc ACB

a: Xét ΔABC và ΔCBD có

AB/CB=BC/BD

góc B chung
Do đó: ΔABC\(\sim\)ΔCBD

b: Ta có: ΔABC\(\sim\)ΔCBD

nên AC/CD=AB/CB

=>7,5/CD=3/4,5=2/3

=>CD=15/2:2/3=15/2x3/2=45/4(cm)

a: Xét ΔABC và ΔCBD có 

BC/BD=AB/BC

\(\widehat{B}\) chung

Do đo: ΔABC\(\sim\)ΔCBD

b: Ta có: ΔABC\(\sim\)ΔCBD

nên AC/CD=BC/BD

=>3,75/CD=2/3

=>CD=5,625(cm)