K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2018

a) Trong hình vẽ có 3 tam giác: ΔABD, ΔCBD, ΔABC

ΔABD và ΔACB có

∠B = ∠C

∠A chung

⇒ ΔABD ∼ ΔACB (g.g)

b) Theo a ta có :

Để học tốt Toán 8 | Giải toán lớp 8

c) Do BD là tia phân giác của góc B nên theo tính chất đường phân giác ta có:

Để học tốt Toán 8 | Giải toán lớp 8

19 tháng 12 2018

a) Trong hình vẽ có 3 tam giác: ΔABD, ΔCBD, ΔABC

ΔABD và ΔACB có

∠B = ∠C

∠A chung

⇒ ΔABD ∼ ΔACB (g.g)

b) Theo a ta có :

Để học tốt Toán 8 | Giải toán lớp 8

c) Do BD là tia phân giác của góc B nên theo tính chất đường phân giác ta có:

Để học tốt Toán 8 | Giải toán lớp 8

a: BC=BD+CD

=15+20

=35(cm)

Xét ΔABC có AD là phân giác

nên \(\dfrac{AB}{BD}=\dfrac{AC}{CD}\)

=>\(\dfrac{AB}{15}=\dfrac{AC}{20}\)

=>\(\dfrac{AB}{3}=\dfrac{AC}{4}=k\)

=>AB=3k; AC=4k

Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(\left(3k\right)^2+\left(4k\right)^2=35^2\)

=>\(25k^2=1225\)

=>\(k^2=49\)

=>k=7

=>\(AB=3\cdot7=21\left(cm\right);AC=4\cdot7=28\left(cm\right)\)

b: 

Ta có: ΔABC vuông tại A

=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot21\cdot28=294\left(cm^2\right)\)

\(\dfrac{BD}{BC}=\dfrac{15}{35}=\dfrac{3}{7}\)

=>\(S_{ABD}=\dfrac{3}{7}\cdot S_{ABC}=\dfrac{3}{7}\cdot294=126\left(cm^2\right)\)

Ta có: \(S_{ABD}+S_{ACD}=S_{ABC}\)

=>\(S_{ACD}+126=294\)

=>\(S_{ACD}=168\left(cm^2\right)\)

30 tháng 9 2018

a) ΔABC Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8 ΔHBA vì Â = Ĥ = 90º, B̂ chung

ΔABC Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8 ΔHAC vì Â = Ĥ = 90º, Ĉ chung

ΔHBA Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8 ΔHAC vì cùng đồng dạng với ΔABC.

b) + ΔABC vuông tại A

⇒ BC2 = AB2 + AC2

(Theo định lý Pytago)

Giải bài 49 trang 84 SGK Toán 8 Tập 2 | Giải toán lớp 8

a: BD/CD=12/16=3/4

=>S ABD/ SACD=3/4

b: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

AD là phân giác

=>BD/3=CD/4=20/7

=>BD=60/7cm; CD=80/7cm

\(AH=\dfrac{12\cdot16}{20}=9.6\left(cm\right)\)

15 tháng 5 2023

Có hình vẽ ko bạn cho mình xin với

24 tháng 4 2017

A là phân giác góc BAC => \(\frac{DC}{DB}\)=\(\frac{AC}{AB}\)=\(\frac{16}{12}\)=\(\frac{4}{3}\)=> \(\frac{DC+DB}{DB}\)=\(\frac{4+3}{3}\)=\(\frac{7}{3}\)

=> \(\frac{BC}{DB}\)=\(\frac{7}{3}\)=> DB= \(\frac{3}{7}BC\)=\(\frac{60}{7}\)cm

=> DC = \(\frac{80}{7}\)cm.

Kẻ DE vuông góc với AC 

DE vuông góc với AC và AB vuông góc với AC => DE song song với AB 

áp dụng hệ quả của định lý Ta-let,ta có; 

\(\frac{DE}{AB}\)=\(\frac{CD}{CB}\)=\(\frac{\frac{80}{7}}{20}\)=\(\frac{4}{7}\)=> DE= \(\frac{4}{7}AB\)=\(\frac{48}{7}\)cm

Diện tích tam giác ACD:  S\(_{ACD}\)\(\frac{1}{2}DE.AC\)=\(\frac{1}{2}.\frac{48}{7}.16\)=\(\frac{384}{7}\)cm\(^2\)

Diện tích tam giác ABD:  S\(_{ABD}\)= S\(_{ABC}\)-S\(_{ACD}\)\(\frac{1}{2}AC.AB\)-\(\frac{384}{7}\)\(\frac{288}{7}\)cm\(^2\)

Tỷ lệ diện tích tam giác ABD và diện tích tam giác ACD là :\(\frac{3}{4}\)

Độ dài cạnh BC là : BC =\(\sqrt{AB^2+AC^2}\)= 20cm

BD=\(\frac{60}{7}cm\)CD =\(\frac{80}{7}cm\)

Chiều cao AH : S\(_{ABC}\)\(\frac{1}{2}AC.AB\)=\(\frac{1}{2}AH.BC\)=> AH = \(\frac{AB.AC}{BC}\)=\(\frac{12.16}{20}\)=\(\frac{48}{5}\)cm

6 tháng 2 2021

Nguyễn Thị Trang- bạn có hình không ạ?

8 tháng 4 2019

a xet ABC và DEC

 chung C

bAc=eDc=90 độ 

=> ABC và DEC đồng dạng (gg) (1)

b BC^2=3^2+5^2=34

=> BC= căn (34)

BD/DC=3/5

BC/DC=8/5

<=> căn 34/DC=8/5

=> DC=căn(34) *5/8

=> BD=căn(34) -DC=3(căn(34))/8

c Sabc=3*5/2=15/2

sabde= 15/2-15/2*17/32=225/64