Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C
a, Xét tam giác ABC vuông tại A, áp dụng định lí Pytago ta có:
BC2 = AB2 + AC2
BC2 = 212 + 722
BC2 = 5625
BC = 75 (cm)
b, Tam giác ABC vuông tại A, đường cao AH
Ta có: AB2 = BH . BC (định lí 1)
212 = BH . 75
BH = 441 : 75
BH = 5,88 (cm)
Ta có : BC = BH + HC
75 = 5,88 + HC
HC = 75 - 5,88
HC = 69,12 (cm)
Ta có: AH2 = BH . HC
AH2 = 5,88 . 69,12
AH2 = 406,4256
AH = 20,16 (cm)
c, (Bạn tự vẽ tia p/g nha)
Theo tính chất đường phân giác góc B ta có:
=> AD/ DC = AB/ BC
=> AD/ AB = DC/BC
=> AD/ 21 = DC/ 75
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
AD/21 = DC/ 75 = AD + DC/ 21 + 75 = AC/ 96 = 72/ 96 = 3/4
=> AD/ 21 = 3/4 => AD = 15,75 (cm)
=> DC/ 75 = 3/4 => DC = 56, 25 (cm)
Mình không biết bạn có đánh sai số hay không mà số chênh nhau lớn quá, nếu bạn đánh sai thì chỉ cần thay số trong bài mình làm cho bạn là được nha :33
CHÚC BẠN HỌC TỐT !!!
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
Xét ΔABC vuông tại A có \(\sin B=\dfrac{AC}{BC}=\dfrac{4}{5}\)
nên \(\widehat{B}=53^0\)
=>\(\widehat{C}=37^0\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
hay AH=4,8(cm)
a. Ta có: AB2 = 62 = 36
AC2 = 4,52 = 20,25
BC2 = 7,52 = 56,25
Vì AB2 + AC2 = 36 + 20,25 = 56,25 = BC2 nên tam giác ABC vuông tại A (theo định lí đảo Pi-ta-go)
Kẻ AH ⊥ BC
Ta có: AH.BC = AB.AC
b. Tam giác ABC và tam giác MBC có chung cạnh đáy BC, đồng thời SABC = SMBC nên khoảng cách từ M đến BC bằng khoảng cách từ A đến BC. Vậy M thay đổi cách BC một khoảng bằng AH nên M nằm trên hai đường thẳng x và y song song với BC cách BC một khoảng bằng AH.A B C D E I S O
1) Xét đường tròn (O) đường kính CD => ^CED = 900 => ^DEB = 900
Xét tứ giác ADEB có: ^BAD + ^ DEB = 900 + 900 = 1800 => Tứ giác ADEB nội tiếp
Hay 4 điểm A,D,E,B cùng thuộc một đường tròn (đpcm).
2) Tứ giác ADEB nội tiếp => ^DEA = ^DBA. Tương tự: ^DEI = ^DCI
Ta có: Tứ giác ABCI nội tiếp của đường tròn đường kính BC (Do ^BAC = ^BIC = 900)
=> ^DBA = ^DCI. Từ đó, suy ra: ^DEA = ^DEI => ED là phân giác ^AEI (đpcm).
3) Dễ thấy DE, CI, BA là 3 đường cao của \(\Delta\)BCD nên AB,CI,DE đồng quy (tại trực tâm \(\Delta\)BCD) (đpcm).
4) Xét \(\Delta\)ABC có vuông tại A: \(\tan\widehat{ABC}=\frac{AC}{AB}=\sqrt{2}\Rightarrow AB=\frac{AC}{\sqrt{2}}\)(theo gt)
Để EA là tiếp tuyến của (CD) thì ^AED = ^DCE. Hay ^ABD = ^ACB (Vì ^AED=^ABD)
<=> \(\Delta\)ADB ~ \(\Delta\)ABC (g,g) <=> \(AB^2=AD.AC\) <=> \(\left(\frac{AC}{\sqrt{2}}\right)^2=AD.AC\)
<=> \(AD=\frac{AC}{2}\)<=> D là trung điểm cạnh AC.
Vậy D là trung điểm AC thì EA là tiếp tuyến của (CD).
Ta có \(\Delta CAB\sim\Delta CDB\left(g.g\right)\Rightarrow\dfrac{CB}{CD}=\dfrac{CA}{CB}\)
\(\Rightarrow CB^2=CD\cdot CA\)
Ta có \(CA=CD+DA=16\left(cm\right)\)
\(\Rightarrow CB^2=9\cdot16=144\Rightarrow CB=12\left(cm\right)\)
Ta có \(\dfrac{DB}{BA}=\dfrac{CB}{CA}=\dfrac{12}{16}=\dfrac{3}{4}\)
\(\Rightarrow DB=\dfrac{3}{4}AB=18\left(cm\right)\)