K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2021

Xét tam giác ABC, ta có:

 \(\Rightarrow\frac{BD}{DC}=\frac{AB}{AC}\)

 \(\Rightarrow\frac{8}{DC}=\frac{18}{21}\)

 \(\Rightarrow DC=\frac{8.21}{14}=12\left(cm\right)\)

\(\Rightarrow BC=BD+DC\)

\(\Rightarrow BC=8+12\)

\(\Rightarrow BC=20\left(cm\right)\)

D B C A

30 tháng 4 2021

#muon roi ma sao con

A B C D

P/s : AD = 8 cm cơ mà có phải BD đâu ? đề này sai rồi, mà bạn @Hoang lấy đâu vậy

Vì AD là tia phân giác ^A nên : 

\(\frac{AB}{AC}=\frac{BD}{DC}\Rightarrow\frac{AB}{BD}=\frac{AC}{DC}\)( tỉ lệ thức ) 

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{AB}{BD}=\frac{AC}{DC}=\frac{AB+AC}{BD+DC}=\frac{14+21}{BC}=\frac{35}{BC}\) 

nếu BD = 8 thì suy ra : \(\frac{35}{BC}=\frac{14}{8}\Leftrightarrow BC=20\)cm 

6 tháng 6 2023

b/18 mong ban xem dung hay sai

Xét ΔABC có AD là phân giác

nên BD/AB=CD/AC

=>BD/8=CD/12

=>BD/2=CD/3

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được: 

\(\dfrac{BD}{2}=\dfrac{CD}{3}=\dfrac{BD+CD}{2+3}=\dfrac{10}{5}=2\)

Do đó:BD=4(cm)

17 tháng 5 2021

A B C D 14 21 8

Vì AD là đường phân giác ^A nên : \(\frac{AB}{AC}=\frac{BD}{DC}\)( t/c )

\(\Rightarrow\frac{14}{21}=\frac{8}{DC}\Rightarrow DC=\frac{21.8}{14}=\frac{168}{14}=12\)

\(\Rightarrow BC=BD+DC=8+12=20\)cm 

13 tháng 4 2021

undefined

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Vậy: BC=10cm

17 tháng 10 2021

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

BC2=AB2+AC2BC2=AB2+AC2

⇔BC2=62+82=100⇔BC2=62+82=100

hay BC=10(cm)

Vậy: BC=10cm

a: Xét ΔABC có AD là phân giác

nên BD/CD=AB/AC=3/4

BC=10cm

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{10}{7}\)

Do đó: BD=30/7(cm); CD=40/7(cm)

b: Xét ΔABC có DE//AC

nên DE/AC=BD/BC

=>DE/8=3/7

hay DE=24/7(cm)

a) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{DB}{DC}=\dfrac{AB}{AC}\)(Tính chất đường phân giác của tam giác)

\(\Leftrightarrow\dfrac{DB}{DC}=\dfrac{6}{8}=\dfrac{3}{4}\)

a) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{DB}{DC}=\dfrac{AB}{AC}\)(Tính chất đường phân giác của tam giác)

\(\Leftrightarrow\dfrac{DB}{DC}=\dfrac{6}{8}=\dfrac{3}{4}\)