K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

góc ABD=góc HBD

=>ΔBAD=ΔBHD

=>DA=DH

b: DA=DH

DH<DC

=>DA<DC

c: Xét ΔBHK vuông tại H và ΔBAC vuông tại A có

BH=BA

góc HBK chung

=>ΔBHK=ΔBAC

=>BK=BC

=>ΔBKC cân tại B

Bai 1 : Cho hình bình hành ABCD ; góc BAD = 120 độ ; AB = 2 AD a) CMR: Tia phân giác của góc ADC đi qua trung điểm E của AB .b) Gọi F là trung điểm DC . CMR tam giác ADF đều và AD vuông góc với ACBài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR:              góc EMD = 3 góc AEMBìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF...
Đọc tiếp

Bai 1 : Cho hình bình hành ABCD ; góc BAD = 120 độ ; AB = 2 AD 
a) CMR: Tia phân giác của góc ADC đi qua trung điểm E của AB .
b) Gọi F là trung điểm DC . CMR tam giác ADF đều và AD vuông góc với AC

Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR:              góc EMD = 3 góc AEM

Bìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I \(\in\)BC). CMR: a) I là trung điểm BC 
          b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB, AC. Gọi I là trung điểm của BC. CMR: AI vuông góc với EF.

Bài 4: Cho tam giác ABC cân tại A . D bất kì thuộc BC . Qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt tại E,F . Gọi I,K lần lượt là trung điểm của BE và CF .
a) CMR: AKDI là hình bình hành 
b) Nêu thêm điều kiện của tam giác ABC và của điểm D để DIAK là hình vuông

0
13 tháng 8 2023

mai mk phải nộp rồi 

a: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

AD là phân giác

=>BD/CD=AB/AC=3/4

=>4DB=3CD

mà DB+DC=15

nên DB=45/7cm; DC=60/7cm

b: Xet ΔABC vuông tại A và ΔEDC vuông tại E có

góc C chung

=>ΔABC đồng dạng với ΔEDC

a: AD/CD=BA/CB=3/5

b: ΔBAD đồng dạng với ΔBHD

ΔCHD đồng dạng với ΔCAB

11 tháng 5 2015

a) Áp dụng định lí Pi-ta-go vào tam giác ABC
   \(BC^2=AB^2+AC^2=15^2+20^2=625\Rightarrow BC=20\left(cm\right)\)

Tam giác ABC có BD là đuognừ phân giác theo tính chất phân giác ta có:

\(\frac{AD}{DC}=\frac{AB}{BC}\) mà theo tính chất dãy tỉ số bằng nhau ta có: \(\frac{AD}{AD+DC}=\frac{AB}{AB+BC}\Leftrightarrow\frac{AD}{AC}=\frac{AB}{15+225}\Leftrightarrow\frac{AD}{20}=\frac{15}{40}\Rightarrow AD=\frac{20\times15}{40}=7,5\left(cm\right)\).

b) Xét Tam giácCHD và Tam giác CAB có

                      ^H = ^A = 90 độ

                    ^C chung
\(\Rightarrow\) Tam giác CHD đồng dạng với tam giácCAB

\(\Rightarrow\frac{HD}{AB}=\frac{CH}{CA}=\frac{CD}{CB}\Rightarrow CH.CB=CD.CA\).

c) Ta có: CD = AC - AD = 20 - 7,5 = 12,5(cm).
Từ tỉ số đồng dạng ở câu b ta có:

\(CH=\frac{CA.CD}{CB}=\frac{20.12,5}{25}=10\left(cm\right).\)

\(HD=\frac{AB.CH}{CA}=\frac{15.10}{20}=7,5\left(cm\right).\)

Vì tam giác HCD vuông tại H nên \(S_{CHD}=\frac{HC.HD}{2}=\frac{10.7,5}{2}=37,5\left(cm^2\right).\)