K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2019

Ta có: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xét ΔABC và ΔANM, ta có

      + Góc A chung

      + Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Suy ra: △ ANM đồng dạng  △ ABC(c.g.c) ⇒ Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vậy MN = Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 = (8.18)/12 = 12 cm

26 tháng 8 2017

21 tháng 6 2017

ta co tam giac ANM dong dang voi tam giac ABC goc A chung AN/AB=AM/AC

suy ra AN/AB=MN/BC

thay so do vao MN=8*18/12=12cm

Vậy,........

8 tháng 3 2022

a, Ta có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}=\dfrac{6}{8}=\dfrac{7,5}{10}=\dfrac{3}{4}\)

=> MN // BC (Ta lét đảo) 

b, Vì MN // BC 

Theo hệ quả Ta lét \(\dfrac{AM}{AB}=\dfrac{MN}{BC}\Leftrightarrow\dfrac{6}{8}=\dfrac{MN}{12}\Leftrightarrow MN=9cm\)

12 tháng 3 2023

a) Do MN//BC nên theo hệ quả của ĐL Ta-let ta có \(\dfrac{AM}{AB}\)=\(\dfrac{MN}{BC}\)

\(\Rightarrow\) \(\dfrac{2}{4}\) = \(\dfrac{MN}{6}\)\(\Rightarrow\) MN = \(\dfrac{2\times6}{4}\)\(\Rightarrow\) MN = 3 cm

b) Do MN//BC nên theo ĐL Ta-let ta có \(\dfrac{AM}{AB}\)=\(\dfrac{AN}{AC}\)

\(\Rightarrow\)\(\dfrac{12}{15}\)=\(\dfrac{AN}{18}\)\(\Rightarrow\) AN = \(\dfrac{12\times18}{15}\) = 14,4 cm

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

a) Ta có:

\(\frac{{AE}}{{AC}} = \frac{{10}}{{15}} = \frac{2}{3};\frac{{AF}}{{AB}} = \frac{8}{{12}} = \frac{2}{3}\)

Xét tam giác \(AFE\) và tam giác \(ABC\) ta có:

\(\frac{{AE}}{{AC}} = \frac{{AF}}{{AB}} = \frac{2}{3}\)

\(\widehat A\) chung

Do đó, \(\Delta AFE\backsim\Delta ABC\) (c.g.c)

Do đó, \(\frac{{AE}}{{AC}} = \frac{{AF}}{{AB}} = \frac{{EF}}{{BC}} = \frac{2}{3}\) (các cặp cạnh tương ứng có cùng tỉ lệ)

Do đó, \(\frac{{EF}}{{BC}} = \frac{2}{3} \Rightarrow EF = \frac{{BC.2}}{3} = \frac{{18.2}}{3} = 12\)

Vậy \(BC = 12cm\).

b) Vì \(FC = FD\) nên tam giác \(FDC\) cân tại \(F\).

Suy ra, \(\widehat {FDC} = \widehat {FCD}\) (tính chất)

Ta có:

\(\frac{{AC}}{{MD}} = \frac{{15}}{{20}} = \frac{3}{4};\frac{{BC}}{{DE}} = \frac{9}{{12}} = \frac{3}{4}\)

Xét tam giác \(ABC\) và tam giác \(MED\) ta có:

\(\frac{{AC}}{{MD}} = \frac{{BC}}{{DE}} = \frac{3}{4}\)

\(\widehat {FCD} = \widehat {FDC}\) (chứng minh trên)

Do đó, \(\Delta ABC\backsim\Delta MED\) (c.g.c).

7 tháng 3 2016

Xét tam giác ABC và MN//BC

Hai tam giác AMN và ABC, có:

   - góc AMN = góc ABC (đồng vị)

   - góc ANM = góc ACB (đồng vị)

   - BAC là góc chung

Mặt khác, theo hệ quả định lí Ta-lét, hai tam giác AMN và ABC có 3 cặp cạnh tương ứng tỉ lệ:

    \(\frac{AM}{AB}=\frac{MN}{BC}=\frac{AN}{AC}\)

Nên tam giác AMN đồng dạng với tam giác ABC

    \(\Rightarrow\frac{AM}{AB}=\frac{AN}{AC}=\frac{1}{3}\)

    \(\Rightarrow\frac{AN}{18}=\frac{1}{3}\)

    \(AN=\frac{18.1}{3}=6\)

Do AC = AN + NC

    \(\Rightarrow NC=AC-AN=18-6=12\)

Vậy NC có độ dài là 12 cm