K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 3 2022

\(p=\dfrac{a+b+c}{2}=15\)

\(S=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}=\sqrt{15\left(15-8\right)\left(15-10\right)\left(15-12\right)}=15\sqrt{7}\)

\(cosA=\dfrac{b^2+c^2-a^2}{2bc}=\dfrac{10^2+12^2-8^2}{2.10.12}=\dfrac{3}{4}\Rightarrow A\approx41^024'\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a) Áp dụng định lí cosin, ta có:

 \(\begin{array}{l}{a^2} = {b^2} + {c^2} - 2bc.\cos A\\ \Leftrightarrow {a^2} = {8^2} + {5^2} - 2.8.5.\cos {120^ \circ } = 129\\ \Rightarrow a = \sqrt {129} \end{array}\)

Áp dụng định lí sin, ta có:

\(\begin{array}{l}\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} \Rightarrow \frac{{\sqrt {129} }}{{\sin {{120}^ \circ }}} = \frac{8}{{\sin B}} = \frac{5}{{\sin C}}\\ \Rightarrow \left\{ \begin{array}{l}\sin B = \frac{{8.\sin {{120}^ \circ }}}{{\sqrt {129} }} \approx 0,61\\\sin C = \frac{{5.\sin {{120}^ \circ }}}{{\sqrt {129} }} \approx 0,38\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\widehat B \approx 37,{59^ \circ }\\\widehat C \approx 22,{41^ \circ }\end{array} \right.\end{array}\)

b) Diện tích tam giác ABC là: \(S = \frac{1}{2}bc.\sin A = \frac{1}{2}.8.5.\sin {120^ \circ } = 10\sqrt 3 \)

c) 

+) Theo định lí sin, ta có: \(R = \frac{a}{{2\sin A}} = \frac{{\sqrt {129} }}{{2\sin {{120}^ \circ }}} = \sqrt {43} \)

+) Đường cao AH của tam giác bằng: \(AH = \frac{{2S}}{a} = \frac{{2.10\sqrt 3 }}{{\sqrt {129} }} = \frac{{20\sqrt {43} }}{{43}}\)

17 tháng 12 2023

 Gợi ý thôi nhé.

a) Có \(AB=\sqrt{\left(x_B-x_A\right)^2+\left(y_B-y_A\right)^2}=\sqrt{\left(\left(-1\right)-6\right)^2+\left(2-\left(-1\right)\right)^2}=\sqrt{58}\)

Tương tự như vậy, ta tính được AC, BC. 

 Tính góc: Dùng \(\cos A=\dfrac{AB^2+AC^2-BC^2}{2AB.AC}\)

b) Chu vi thì bạn lấy 3 cạnh cộng lại.

 Diện tích: Dùng \(S_{ABC}=\dfrac{1}{2}AB.AC.\sin A\)

c) Gọi \(H\left(x_H,y_H\right)\) là trực tâm thì \(\left\{{}\begin{matrix}AH\perp BC\\BH\perp AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\overrightarrow{AH}.\overrightarrow{BC}=0\\\overrightarrow{BH}.\overrightarrow{AC}=0\end{matrix}\right.\)

 Sau đó dùng: \(\overrightarrow{u}\left(x_1,y_1\right);\overrightarrow{v}\left(x_2,y_2\right)\) thì \(\overrightarrow{u}.\overrightarrow{v}=x_1x_2+y_1y_2\) để lập hệ phương trình tìm \(x_H,y_H\)

Trọng tâm: Gọi \(G\left(x_G,y_G\right)\) là trọng tâm và M là trung điểm BC. Dùng \(\left\{{}\begin{matrix}x_M=\dfrac{x_B+x_C}{2}\\y_M=\dfrac{y_B+y_C}{2}\end{matrix}\right.\) để tìm tọa độ M. 

 Dùng \(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AM}\) để lập hpt tìm tọa độ G.

17 tháng 12 2023

Bài gì vậy ạ?

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) Ta có: \(\overrightarrow {BC}  = \left( { - 7;1} \right),\overrightarrow {BA}  = \left( {3;3} \right)\)

\(\cos \widehat {ABC} = \left( {\overrightarrow {BC} ,\overrightarrow {BA} } \right) = \frac{{\left( { - 7} \right).3 + 1.3}}{{\sqrt {{{\left( { - 7} \right)}^2} + {1^2}} .\sqrt {{3^2} + {3^2}} }} =  - \frac{3}{5} \Rightarrow \widehat {ABC} \approx {126^o}\)

b) Ta có: \(\overrightarrow {BC}  = \left( { - 7;1} \right),\overrightarrow {BA}  = \left( {3;3} \right),\overrightarrow {AC}  = \left( { - 10; - 2} \right)\)

Suy ra: \(\begin{array}{l}AB = \left| {\overrightarrow {BA} } \right| = \sqrt {{3^2} + {3^2}}  = 3\sqrt 2 \\AC = \left| {\overrightarrow {AC} } \right| = \sqrt {{{\left( { - 10} \right)}^2} + {{\left( { - 2} \right)}^2}}  = \sqrt {104} \\BC = \left| {\overrightarrow {BC} } \right| = \sqrt {{{\left( { - 7} \right)}^2} + {1^2}}  = \sqrt {50} \end{array}\)

Vậy chu vi tam giác ABC là: \({P_{ABC}} = 2\sqrt {26}  + 8\sqrt 2 \)

c) Để diện tích của tam giác ABC bằng hai lần diện tích của tam giác ABM thì M phải là trung điểm BC.

Vậy tọa độ điểm M là: \(\left\{ \begin{array}{l}\frac{{{x_B} + {x_C}}}{2} = \frac{{ - 9}}{2}\\\frac{{{y_B} + {y_C}}}{2} = \frac{3}{2}\end{array} \right.\). Vậy \(M\left( {\frac{{ - 9}}{2};\frac{3}{2}} \right)\)

a: \(AB=\sqrt{\left(2+1\right)^2+\left(1-1\right)^2}=3\)

\(BC=\sqrt{\left(-1-2\right)^2+\left(-3-1\right)^2}=5\)

\(AC=\sqrt{\left(-1+1\right)^2+\left(-3-1\right)^2}=4\)

=>C=3+4+5=12

b: Tọa độ trọng tâm là:

\(\left\{{}\begin{matrix}x=\dfrac{-1+2-1}{3}=0\\y=\dfrac{1+1-3}{3}=-\dfrac{1}{3}\end{matrix}\right.\)

c: ABCD là hình bình hành

=>vecto AB=vecto DC

=>-1-x=2-(-1)=3 và -3-y=1-1=0

=>x=-4 và y=-3

I
3 tháng 2 2023

a) Ta có :

\(\overrightarrow{AB}=3\\ \overrightarrow{BC}=5\\ \overrightarrow{AC}=4\)

Chu vi tam giác là : 

AB + BC + AC = 3 + 4 + 5 = 12

b) Toạ độ trọng tâm của tam giác ABC là :

\(\left(\dfrac{x_A+x_B+x_C}{3};\dfrac{y_A+y_B+y_C}{3}\right)=\left(\dfrac{-1+2+\left(-1\right)}{3};\dfrac{1+1+\left(-3\right)}{3}\right)=\left(0;-\dfrac{1}{3}\right)\)

c) Cho điểm D ( x ; y )

Để tứ giác ABCD là hình bình hành thì :

\(\overrightarrow{AD}=\overrightarrow{BC}\)

\(\Leftrightarrow\left(x+1;y-1\right)=\left(-3;-4\right)\\ \Leftrightarrow\left[{}\begin{matrix}x=-4\\y=-3\end{matrix}\right.\)

Vậy với D ( -4 ; -3 ) thì tứ giác ABCD là hình bình hành

 

a: \(\overrightarrow{AB}=\left(-3;4\right)\)

\(\overrightarrow{AC}=\left(8;6\right)\)

Vì \(\overrightarrow{AB}\cdot\overrightarrow{AC}=0\) nên ΔABC vuông tại A 

c: Tọa độ trọng tâm G là:

\(\left\{{}\begin{matrix}x_G=\dfrac{1-2+9}{3}=\dfrac{8}{3}\\y_G=\dfrac{2+6+8}{3}=\dfrac{16}{3}\end{matrix}\right.\)

13 tháng 1 2022

hảo copy :V

 

17 tháng 4 2022

REFER

17 tháng 4 2022

tham khảo

 

 

Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán...
Đọc tiếp

Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC

 Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.

Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán kính đường tròn ngoại tiếp ∆MBC.

Bài 13:Cho ABC có 0 0 A B b = = = 60 , 45 , 2 tính độ dài cạnh a, c, bán kính đường tròn ngoại tiếp và diện tích tam giác ABC

Bài 14:Cho ABC AC = 7, AB = 5 và 3 cos 5 A = . Tính BC, S, a h , R, r.

Bài 15:Cho ABC có 4, 2 m m b c = = và a =3 tính độ dài cạnh AB, AC.

Bài 16:Cho ABC có AB = 3, AC = 4 và diện tích S = 3 3 . Tính cạnh BC

Bài 17:Cho tam giác ABC có ˆ o A 60 = , c h 2 3 = , R = 6. a) Tính độ dài các cạnh của ∆ABC. b) Họi H là trực tâm tam giác ABC. Tính bán kính đường tròn ngoại tiếp ∆AHC.

Bài 18:a. Cho ABC biết 0 0 a B C = = = 40,6; 36 20', 73 . Tính BAC , cạnh b,c. b.Cho ABC biết a m = 42,4 ; b m = 36,6 ; 0 C = 33 10' . Tính AB, và cạnh c.

Bài 19:Tính bán kính đường tròn nội tiếp ABC biết AB = 2, AC = 3, BC = 4.

Bài 20:Cho ABC biết A B C (4 3; 1 , 0;3 , 8 3;3 − ) ( ) ( ) a. Tính các cạnh và các góc của ABC b. Tính chu vi và diện tích ABC

0