Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Vì $A\not\in (d_1); (d_2)$ nên 2 đường trung tuyến này xuất phát từ đỉnh B và đỉnh C.
Gọi đây lần lượt là đường trung tuyến $BM,CN$
Gọi tọa độ $B(b, 2b-1), M(m, 2m-1), C(1,c), N(1,n)$
$M$ là trung điểm $AC$ nên: $m=\frac{3+1}{2}$ và $2m-1=\frac{1+c}{2}$
$\Rightarrow m=2; c=5$
Vậy tọa độ điểm C là $(1,5)$
$N$ là trung điểm $AB$ nên: $1=\frac{3+b}{2}$
$\Rightarrow b=-1$. Tọa độ $B(-1, -3)$
Gọi D là giao điểm của hai đường phân giác trong góc B và góc C
+) Trên BC lấy điểm M sao cho: AM vuông BD tại H
=> Đường thẳng AM \(\perp\)BH => AM có dạng: 2x + y + a = 0
mà A ( 2; -1) \(\in\)AM => 2.2 + ( -1) + a = 0 <=> a = -3
=> phương trình đt: AM : 2x + y - 3 = 0
H là giao của AM và BD => Tọa độ điểm H là nghiệm hệ: \(\hept{\begin{cases}x-2y+1=0\\2x+y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)=> H ( 1; 1)
Lại có: BH vừa là đường cao vừa là đường phân giác \(\Delta\)ABM => \(\Delta\)ABM cân => H là trung điểm AM
=> \(\hept{\begin{cases}x_M=2x_H-x_A=2.1-2=0\\y_M=2y_H-y_B=2.1-\left(-1\right)=3\end{cases}}\)=> M ( 0; 3 )
+) Trên BC lấy lấy điêm N sao cho AN vuông CD tại K
Làm tương tự như trên ta có:
AN có dạng: x - y + b = 0 mà A thuộc AN => 2 + 1 + b = 0 => b = - 3
K là giao điểm của AN và CD => K ( 0; -3 )
K là trung điểm AN => N ( -2; -5 )
=> Đường thẳng BC qua điểm M và N
\(\overrightarrow{MN}\left(-2;-8\right)\)=> VTPT của BC là: \(\overrightarrow{n}\left(8;-2\right)\)
=> Phương trình BC : \(8\left(x-0\right)+\left(-2\right)\left(y-3\right)=0\)
<=> 4x -y + 3 = 0
Vậy: BC : 4x - y + 3 = 0