Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\overrightarrow{AB}=\left(-3;4\right)\)
\(\overrightarrow{AC}=\left(8;6\right)\)
Vì \(\overrightarrow{AB}\cdot\overrightarrow{AC}=0\) nên ΔABC vuông tại A
c: Tọa độ trọng tâm G là:
\(\left\{{}\begin{matrix}x_G=\dfrac{1-2+9}{3}=\dfrac{8}{3}\\y_G=\dfrac{2+6+8}{3}=\dfrac{16}{3}\end{matrix}\right.\)
Gọi \(C\left(x;0\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-6;2\right)\\\overrightarrow{BC}=\left(x+2;-4\right)\end{matrix}\right.\)
Tam giác ABC vuông tại B \(\Leftrightarrow\overrightarrow{AB}.\overrightarrow{BC}=0\)
\(\Rightarrow-6\left(x+2\right)-8=0\) \(\Rightarrow x=-\dfrac{10}{3}\)
\(\Rightarrow C\left(-\dfrac{10}{3};0\right)\)
Bạn tự tính tọa độ \(\overrightarrow{AC};\overrightarrow{BC}\) từ đó suy ra độ dài 3 cạnh và tính được chu vi, diện tích
Do tam giác ABC vuông tại B nên ABCD là hcn khi \(\overrightarrow{AB}=\overrightarrow{DC}\)
Gọi \(D\left(x;y\right)\Rightarrow\overrightarrow{DC}=\left(-\dfrac{10}{3}-x;-y\right)\)
\(\Rightarrow\left\{{}\begin{matrix}-\dfrac{10}{3}-x=-6\\-y=2\end{matrix}\right.\) \(\Rightarrow D\left(\dfrac{8}{3};-2\right)\)
a) \(\overrightarrow{AB}\left(2;2\right);\overrightarrow{AC}\left(2;-2\right)\) . Vì \(\frac{2}{2}\ne\frac{2}{-2}\) nên \(\overrightarrow{AB};\overrightarrow{AC}\) không cùng phương => A; B; C không thẳng hàng
b) Gọi G là trọng tâm tam giác ABC => \(\begin{cases}x_G=\frac{x_A+x_B+x_C}{3}=\frac{-1+1+1}{3}=\frac{1}{3}\\y_G=\frac{y_A+y_B+y_C}{3}=\frac{1+3+\left(-1\right)}{3}=1\end{cases}\)=> G(1/3; 1)
c) ABCD là hình bình hành <=> \(\overrightarrow{AD}=\overrightarrow{BC}\Leftrightarrow\begin{cases}x_D-x_A=x_C-x_B\\y_D-y_A=y_C-y_B\end{cases}\) <=> \(\begin{cases}x_D+1=0\\y_D-1=-4\end{cases}\) <=> \(\begin{cases}x_D=-1\\y_D=-3\end{cases}\) Vậy D (-1;-3)
d) \(\overrightarrow{AB}\left(2;2\right);\overrightarrow{AC}\left(2;-2\right)\)
=> \(\overrightarrow{AB}.\overrightarrow{AC}=2.2+2.\left(-2\right)=0\) => \(\overrightarrow{AB};\overrightarrow{AC}\) vuông góc với nhau => tam giác ABC vuông tại A
Ta có: AB2 = 22 + 22 = 8 ; AC2 = 22 + (-2)2 = 8 => AB = AC => Tam giác ABC cân tại A
vậy...
e) Có thể đề của bạn là tam giác ABE vuông cân tại E ( Khi đó giải điều kiện: EA = EB và vec tơ EA . Vec tơ EB = 0)
g) M nằm trên Ox => M (m; 0)
Tam giác OMA cân tại O <=> OM = OA Hay OM2 = OA2 <=> m2 = (-1)2 + 12 => m2 = 2 <=> m = \(\sqrt{2}\) hoặc m = - \(\sqrt{2}\)
Vậy M (\(\sqrt{2}\); 0) ; M (-\(\sqrt{2}\); 0 )
a: vecto CM=(x+4;y-3)
vecto AM=(x-2;y-1)
vecto BM=(x-5;y-2)
Theo đề, ta có: x-4+3x-6=2x-10 và y-3+3y-3=2y-4
=>4x-10=2x-10 và 4y-6=2y-4
=>x=0 và y=1
b:
D thuộc Ox nên D(x;0)
vecto AB=(3;1)
vecto DC=(-4-x;3)
Theo đề, ta có: 3/-x-4=1/3
=>-x-4=9
=>-x=13
=>x=-13
a: \(IA^2=\left(1-x\right)^2+\left(-2-y\right)^2\)
\(IB^2=\left(-3-x\right)^2+\left(5-y\right)^2\)
\(IC^2=\left(-1-x\right)^2+\left(4-y\right)^2=\left(x+1\right)^2+\left(y-4\right)^2\)
Theo đề, ta có:\(\left\{{}\begin{matrix}\left(x-1\right)^2+\left(y+2\right)^2=\left(x+3\right)^2+\left(y-5\right)^2\\\left(x+3\right)^2+\left(y-5\right)^2=\left(x+1\right)^2+\left(y-4\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-2x+1+y^2+4y+4=x^2+6x+9+y^2-10y+25\\x^2+6x+9+y^2-10y+25=x^2+2x+1+y^2-8y+16\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2x+4y+5=6x-10y+34\\6x-10y+34=2x-8y+17\end{matrix}\right.\)
=>I(-9/2;-1/2)
b: \(AB=\sqrt{\left(-3-1\right)^2+\left(5+2\right)^2}=\sqrt{65}\)
\(AC=\sqrt{\left(-1-1\right)^2+\left(4+2\right)^2}=2\sqrt{10}=\sqrt{40}\)
\(BC=\sqrt{\left(-1+3\right)^2+\left(4-5\right)^2}=\sqrt{5}\)
Vì ΔABC ko vuông nên chắc chắn sẽ ko có điểm D nào thỏa mãn ABCD là hình chữ nhật
c: \(C=\sqrt{65}+\sqrt{40}+\sqrt{5}\left(cm\right)\)