K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2020

a, Xét △BAH vuông tại H có: HBA + BAH = 90o (tổng 2 góc nhọn trong △vuông)

Ta có: BAC = BAH + HAC  => BAH + HAC = 90o

=> HBA = HAC  => HBA = KAD

Xét △HBA vuông tại H và △KAD vuông tại K

Có: HBA = KAD (cmt)

       AB = AD (gt)

=> △HBA = △KAD (ch-gn)

b, Vì BC ⊥ AH (gt)  => HE ⊥ HK

và AH ⊥ KD (gt) => HK ⊥ KD

=> HE // KD (từ vuông góc đến song song)

Xét △HKD vuông tại K và △DEH vuông tại E

Có: HD là cạnh chung

       KHD = HDE (HE // KD)

=> △HKD = △DEH (ch-gn)

c, Vì △HKD = △DEH (cmt)

=> KD = EH (2 cạnh tương ứng)

Mà AH = KD (△HBA = △KAD)

=> AH = EH

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC

AH chung

Do đó: ΔABH=ΔAHC

Ta có: ΔABC cân tại A

mà AH là đường cao

nên AH là đường phân giác

b: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

\(\widehat{DAH}=\widehat{EAH}\)

Do đó: ΔADH=ΔAEH

Suy ra: HD=HE và AD=AE

d: Xét ΔABC có

AD/AB=AE/AC

nên DE//BC

20 tháng 11 2023

a: ΔABC vuông tại A

=>\(\widehat{ABC}+\widehat{ACB}=90^0\)

=>\(\widehat{ABC}+30^0=90^0\)

=>\(\widehat{ABC}=60^0\)

Xét ΔABD có

AH là đường cao

AH là đường trung tuyến

Do đó: ΔABD cân tại A

Xét ΔABD cân tại A có \(\widehat{B}=60^0\)

nên ΔABD đều

b: ΔABD đều

=>\(\widehat{BAD}=60^0\)

\(\widehat{BAD}+\widehat{CAD}=\widehat{BAC}\)

=>\(\widehat{CAD}+60^0=90^0\)

=>\(\widehat{CAD}=30^0\)

Xét ΔDAC có \(\widehat{DAC}=\widehat{DCA}\left(=30^0\right)\)

nên ΔDAC cân tại D

=>DA=DC

Xét ΔDHA vuông tại H và ΔDEC vuông tại E có

DA=DC

\(\widehat{HDA}=\widehat{EDC}\)

Do đó: ΔDHA=ΔDEC

=>DE=DH

Xét ΔDEH và ΔDAC có

\(\dfrac{DE}{DA}=\dfrac{DH}{DC}\)(DE=DH; DA=DC)

\(\widehat{EDH}=\widehat{ADC}\)

Do đó: ΔDEH đồng dạng với ΔDAC

=>\(\widehat{DEH}=\widehat{DAC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên EH//AC

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

b: ΔABC cân tại A

mà AH là trung tuyến

nên AH là phân giác

c: Xet ΔAEH vuôngtại E và ΔAFH vuông tại F có

AH chung

góc EAH=góc FAH

=>ΔAEH=ΔAFH

=>AE=AF
=>ΔAEF cân tại A

mà AI là phân giác

nên AI là trung tuyến

10 tháng 1 2021

undefined

 

a, tgABC cân tại A suy ra gócABC=gócACB, AB=AC

AH⊥BC ⇒ gócAHB=gócAHC

Xét △ABH và △ACH có:

gócABC=gócACB,AB=AC,gócAHB=gócAHC (C/m trên)

⇒ △ABH=△ACH (ch-gn)

b, Ta có △ABH=△ACH ➩ gócDAH=gócEAH (2 góc tương ứng)

Xét △DAH và △EAH có

gócDAH=gócEAH (c/m trên), ADH=gócAEH=90độ (DH⊥AB, HE⊥AC)

AH là cạnh chung

⇒ △DAH=△EAH (ch-gn) ⇒ AD=AE (2 cạnh tương ứng)

⇒ △ADE cân tại A

c, △ABC cân tại A ⇒ gócB=\(\dfrac{180độ-gócA}{2}\)

△ADE cân tại A ⇒ gócC=\(\dfrac{180độ-gócA}{2}\)

⇒gócB=gócC , mà 2 góc này nằm ở vị trí đồng vị

⇒ DE//BC

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC

AH chung

Do đó: ΔABH=ΔACH

Suy ra: BH=CH

b: BH=CH=6cm

=>AH=8cm

c: Xét ΔAHE có 

AK là đường cao

AK là đường trung tuyến

Do đó: ΔAHE cân tại A

hay AE=AH

d: Xét ΔADH có

AI là đường cao

AI là đườngtrung tuyến

Do đó:ΔADH cân tại A

=>AD=AH=AE

=>ΔADE cân tại A

a: Xét ΔABH vuông tại H và ΔDAK vuông tại K có

AB=DA

góc ABH=góc DAK

=>ΔABH=ΔDAK

b: ΔABH=ΔDAK

=>BH=AK

mà AK<AD

nên BH<AD

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC

AH chung

DO đó: ΔABH=ΔACH

c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

\(\widehat{DAH}=\widehat{EAH}\)

Do đó:ΔADH=ΔAEH

Suy ra: AD=AE
hay ΔADE cân tại A

d: Xét ΔABC có AD/AB=AE/AC

nên DE//BC