Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
Do đó: ΔABH=ΔAHC
Ta có: ΔABC cân tại A
mà AH là đường cao
nên AH là đường phân giác
b: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
\(\widehat{DAH}=\widehat{EAH}\)
Do đó: ΔADH=ΔAEH
Suy ra: HD=HE và AD=AE
d: Xét ΔABC có
AD/AB=AE/AC
nên DE//BC
a: ΔABC vuông tại A
=>\(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\widehat{ABC}+30^0=90^0\)
=>\(\widehat{ABC}=60^0\)
Xét ΔABD có
AH là đường cao
AH là đường trung tuyến
Do đó: ΔABD cân tại A
Xét ΔABD cân tại A có \(\widehat{B}=60^0\)
nên ΔABD đều
b: ΔABD đều
=>\(\widehat{BAD}=60^0\)
\(\widehat{BAD}+\widehat{CAD}=\widehat{BAC}\)
=>\(\widehat{CAD}+60^0=90^0\)
=>\(\widehat{CAD}=30^0\)
Xét ΔDAC có \(\widehat{DAC}=\widehat{DCA}\left(=30^0\right)\)
nên ΔDAC cân tại D
=>DA=DC
Xét ΔDHA vuông tại H và ΔDEC vuông tại E có
DA=DC
\(\widehat{HDA}=\widehat{EDC}\)
Do đó: ΔDHA=ΔDEC
=>DE=DH
Xét ΔDEH và ΔDAC có
\(\dfrac{DE}{DA}=\dfrac{DH}{DC}\)(DE=DH; DA=DC)
\(\widehat{EDH}=\widehat{ADC}\)
Do đó: ΔDEH đồng dạng với ΔDAC
=>\(\widehat{DEH}=\widehat{DAC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên EH//AC
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: ΔABC cân tại A
mà AH là trung tuyến
nên AH là phân giác
c: Xet ΔAEH vuôngtại E và ΔAFH vuông tại F có
AH chung
góc EAH=góc FAH
=>ΔAEH=ΔAFH
=>AE=AF
=>ΔAEF cân tại A
mà AI là phân giác
nên AI là trung tuyến
a, tgABC cân tại A suy ra gócABC=gócACB, AB=AC
AH⊥BC ⇒ gócAHB=gócAHC
Xét △ABH và △ACH có:
gócABC=gócACB,AB=AC,gócAHB=gócAHC (C/m trên)
⇒ △ABH=△ACH (ch-gn)
b, Ta có △ABH=△ACH ➩ gócDAH=gócEAH (2 góc tương ứng)
Xét △DAH và △EAH có
gócDAH=gócEAH (c/m trên), ADH=gócAEH=90độ (DH⊥AB, HE⊥AC)
AH là cạnh chung
⇒ △DAH=△EAH (ch-gn) ⇒ AD=AE (2 cạnh tương ứng)
⇒ △ADE cân tại A
c, △ABC cân tại A ⇒ gócB=\(\dfrac{180độ-gócA}{2}\)
△ADE cân tại A ⇒ gócC=\(\dfrac{180độ-gócA}{2}\)
⇒gócB=gócC , mà 2 góc này nằm ở vị trí đồng vị
⇒ DE//BC
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
Do đó: ΔABH=ΔACH
Suy ra: BH=CH
b: BH=CH=6cm
=>AH=8cm
c: Xét ΔAHE có
AK là đường cao
AK là đường trung tuyến
Do đó: ΔAHE cân tại A
hay AE=AH
d: Xét ΔADH có
AI là đường cao
AI là đườngtrung tuyến
Do đó:ΔADH cân tại A
=>AD=AH=AE
=>ΔADE cân tại A
a: Xét ΔABH vuông tại H và ΔDAK vuông tại K có
AB=DA
góc ABH=góc DAK
=>ΔABH=ΔDAK
b: ΔABH=ΔDAK
=>BH=AK
mà AK<AD
nên BH<AD
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
DO đó: ΔABH=ΔACH
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
\(\widehat{DAH}=\widehat{EAH}\)
Do đó:ΔADH=ΔAEH
Suy ra: AD=AE
hay ΔADE cân tại A
d: Xét ΔABC có AD/AB=AE/AC
nên DE//BC
a, Xét △BAH vuông tại H có: HBA + BAH = 90o (tổng 2 góc nhọn trong △vuông)
Ta có: BAC = BAH + HAC => BAH + HAC = 90o
=> HBA = HAC => HBA = KAD
Xét △HBA vuông tại H và △KAD vuông tại K
Có: HBA = KAD (cmt)
AB = AD (gt)
=> △HBA = △KAD (ch-gn)
b, Vì BC ⊥ AH (gt) => HE ⊥ HK
và AH ⊥ KD (gt) => HK ⊥ KD
=> HE // KD (từ vuông góc đến song song)
Xét △HKD vuông tại K và △DEH vuông tại E
Có: HD là cạnh chung
KHD = HDE (HE // KD)
=> △HKD = △DEH (ch-gn)
c, Vì △HKD = △DEH (cmt)
=> KD = EH (2 cạnh tương ứng)
Mà AH = KD (△HBA = △KAD)
=> AH = EH