K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2020

bài này dài lắm ko ai giải đâu

12 tháng 5 2020

dai den bao gio moi xong lol

18 tháng 1 2022

Do tam giác ABC vuông nên tổng số đo góc B và C là 1800 - A = 900

Ta có : \(C:B=1:2\)

\(\Rightarrow\dfrac{C}{1}=\dfrac{B}{2}\)

Ấp dụng tính chất dãy tỉ số bằng nhau, ta có :

\(\Rightarrow\dfrac{C}{1}=\dfrac{B}{2}=\dfrac{C+B}{1+2}=\dfrac{90}{3}=30^0\)

\(\Rightarrow\widehat{C}=30.1=30^0\)

\(\Rightarrow\widehat{B}=30.2=60^0\)

Vậy đáp án cần chọn là B

17 tháng 10 2016

a) xét tam giác ABM và tam giác ADM có

   BM=MD

   cạnh AM chung

  AB=AD

=> 2 tam giác bằng nhau (c.c.c)

=> góc AMD= góc AMB =90độ

b) xét tam giác BMK và tam giác DMK có

BM=MD

góc DMK= góc BMK

cạnh MK chung

=> 2 tam giác bằng nhau (c.g.c)

=> BK=KD

c)vì góc C=40 độ ; góc B = 60 độ => góc A = 80 độ

vì AB = AD => tam giác ABD cân tại A

=> góc ABD = góc ADB =(180 - 80) : 2 = 50 độ

=> góc DBK = 60 - 50 = 10 độ

vì tam giác KBM = tam giác DKM => BK = KD => tam giác BDK cân tại K 

=> góc KBD = góc KDB = 10 độ

áp dụng tính chất góc ngoài của tam giác vào tam giác BKD => góc DKC = 10 + 10 = 20 độ

17 tháng 10 2016

a) Xét tam giác AMB và tam giác ABD có:

         AM là cạnh chung   

        AB=AD (gt)

       BM=MD(vì M là trung điểm của BD )

Do đó tam giác AMB=tam giác ABD (C-C-C)

b) Ta có : góc AMD =góc BMK (2 góc đối đỉnh)

              góc AMB= góc DMK(2 góc đối đỉnh)     

     Mà góc AMB= góc AMD( tam giác AMB=tam giác AMD)

Suy ra góc BMK = góc DMK

            Xét tam giác BMK và tam giác DMK có:   

                  BM=MD(M là trung điếm của BD)

                  MK là cạnh chung 

                  góc BMK =góc DMK(Chứng minh trên)

         Do đó tam giác BMK=tam giác DMK (C-G-C)

             Suy ra KB=KD(2 cạnh tương ứng)

c) TỰ LÀM NHÉ !       

4 tháng 12 2017

cau 1:A

cau 2:b

Bài 2: 

Đặt số đo góc B là x, số đo góc C là y

Theo đề, ta có:

\(\left\{{}\begin{matrix}x+y=90\\x-y=24\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=114\\x+y=90\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=57^0\\y=33^0\end{matrix}\right.\)