K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔABC vuông tại A có AM là trung tuyến

nên MA=MC=MB

=>góc MAC=góc MCA=góc BAH

b: góc ADH=góc AEH=góc DAE=90 độ

=>ADHE là hình chữ nhật

góc EAM+góc AED

=góc AHD+góc MCA

=góc ABC+góc MCA=90 độ

=>AM vuông góc ED

22 tháng 10 2021

a: Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên AM=CM

Xét ΔMAC có MA=MC

nên ΔMAC cân tại M

Suy ra: \(\widehat{MAC}=\widehat{BCA}\)

hay \(\widehat{BAH}=\widehat{MAC}\)

15 tháng 12 2019

mình định chụp rồi gửi cho bạn mà ko được

26 tháng 8 2019

Mn vào tcn của con này, https://olm.vn/thanhvien/kimmai123az, PTD/KM ?, nó chuyên đi copy bài của ng khác và câu hỏi tương tự

27 tháng 11 2021

a) \(\Delta ABC\)vuông tại A có trung tuyến AM (gt) \(\Rightarrow AM=\frac{BC}{2}\)(1)

Mà M là trung điểm BC nên \(MC=\frac{BC}{2}\)(2)

Từ (1) và (2) \(\Rightarrow AM=CM\left(=\frac{BC}{2}\right)\)\(\Rightarrow\Delta ACM\)cân tại M \(\Rightarrow\widehat{MAC}=\widehat{C}\)

Vì \(\Delta ABC\)vuông tại A nên \(\widehat{B}+\widehat{C}=90^0\Rightarrow\widehat{C}=90^0-\widehat{B}\)(3)

Do AH là đường cao của \(\Delta ABC\)nên \(\Delta ABH\)vuông tại H \(\Rightarrow\widehat{BAH}+\widehat{B}=90^0\Rightarrow\widehat{BAH}=90^0-\widehat{B}\)(4)

Từ (3) và (4) \(\Rightarrow\widehat{C}=\widehat{BAH}\left(=90^0-\widehat{B}\right)\)

Lại có \(\widehat{MAC}=\widehat{C}\left(cmt\right)\Rightarrow\widehat{BAH}=\widehat{MAC}\)(đpcm)

b) Vì \(HD\perp AB\)tại D(gt) nên HD là đường cao của \(\Delta ABH\)

Xét \(\Delta ABH\)vuông tại H có đường cao HD \(\Rightarrow AH^2=AD.AB\left(htl\right)\)(5)

Chứng minh tương tự, ta có \(AH^2=AE.AC\)(6)

Từ (5) và (6) \(\Rightarrow AD.AB=AE.AC\Rightarrow\frac{AD}{AC}=\frac{AE}{AB}\)

Xét \(\Delta AED\)và \(\Delta ABC\)có \(\frac{AD}{AC}=\frac{AE}{AB}\left(cmt\right);\)\(\widehat{A}\)chung

\(\Rightarrow\Delta AED~\Delta ABC\left(c.g.c\right)\)\(\Rightarrow\widehat{AED}=\widehat{ABC}\)\(\Rightarrow\widehat{AEK}=\widehat{B}\)(hiển nhiên) (7)

Mặt khác \(\widehat{MAC}=\widehat{C}\left(cmt\right)\Rightarrow\widehat{EAK}=\widehat{C}\)(hiển nhiên) (8)

Từ (7) và (8) \(\Rightarrow\widehat{AEK}+\widehat{EAK}=\widehat{B}+\widehat{C}\)

Mà \(\widehat{B}+\widehat{C}=90^0\left(cmt\right)\Rightarrow\widehat{AEK}+\widehat{EAK}=90^0\)

\(\Delta AEK\)có \(\widehat{AEK}+\widehat{EAK}=90^0\left(cmt\right)\Rightarrow\Delta AEK\)vuông tại K \(\Rightarrow AK\perp EK\)tại K

\(\Rightarrow AM\perp DE\)tại K (hiển nhiên) và ta có đpcm.

c) Dễ thấy \(BC=BH+CH=4,5+8=12,5\)
\(\Delta ABC\)vuông tại A, đường cao AH \(\Rightarrow\hept{\begin{cases}AH^2=BH.CH=4,5.8=36\Rightarrow AH=6\\AB^2=BH.BC=4,5.12,5=56,25\Rightarrow AB=7,5\\AC^2=CH.BC=8.12,5=100\Rightarrow AC=10\end{cases}}\)

Và \(AC^2=CH.BC=8.12,5=100\Rightarrow AC=10\)

Dễ thấy tứ giác ADHE là hình chữ nhật \(\Rightarrow AH=DE\), mà \(AH=6\Rightarrow DE=6\)

Lại có \(\Delta AED~\Delta ABC\left(cmt\right)\Rightarrow\frac{AE}{AB}=\frac{AD}{AC}=\frac{DE}{BC}\)(*)

Thay \(AB=7,5;AC=10;BC=12,5;DE=6\)vào (*), ta có: \(\frac{AE}{7,5}=\frac{AD}{10}=\frac{6}{12,5}=\frac{12}{25}\)

\(\Rightarrow\hept{\begin{cases}AE=\frac{12.7,5}{25}=3,6\\AD=\frac{10.12}{25}=4,8\end{cases}}\)

\(\Delta ADE\)vuông tại A, đường cao AK (vì \(AK\perp DE\)tại K theo cmt)

\(\Rightarrow AK.DE=AD.AE\left(htl\right)\)\(\Rightarrow AK=\frac{AD.AE}{DE}=\frac{3,6.4,8}{6}=2,88\)

Vậy AK = 2,88

24 tháng 9 2021

Xét tứ giác ADHE có:

\(\widehat{BAC}=\widehat{ADH}=\widehat{AEH}=90^0\)

=> Tư giác ADHE là hình chữ nhật

\(\Rightarrow DE=AH\left(1\right)\)

Áp dụng HTL trong tam giác ABC vuông tại A có đường cao AH

\(AH^2=HB.HC\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow DE^2=HB.HC\)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(AH^2=HB\cdot HC\left(1\right)\)

Xét tứ giác ADHE có 

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

Do đó: ADHE là hình chữ nhật

Suy ra: AH=DE(2)

Từ (1) và (2) suy ra \(DE^2=HB\cdot HC\)

a: BC=BH+CH

=2+8

=10(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(AH=\sqrt{2\cdot8}=4\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}AB=\sqrt{2\cdot10}=2\sqrt{5}\left(cm\right)\\AC=\sqrt{8\cdot10}=4\sqrt{5}\left(cm\right)\end{matrix}\right.\)

b: Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

=>DE=AH

c: ΔHDB vuông tại D 

mà DM là đường trung tuyến

nên DM=HM=MB

\(\widehat{EDM}=\widehat{EDH}+\widehat{MDH}\)

\(=\widehat{EAH}+\widehat{MHD}\)

\(=90^0-\widehat{C}+\widehat{C}=90^0\)

=>DE vuông góc DM

22 tháng 3 2020

A H B C D E M K

A, - Xét tam giác ABC có AM là trung tuyến ứng với cạnh huyền .

=> \(AM=\frac{1}{2}BC=CM=BM\)

- Xét tam giác CMA có : \(AM=CM\)

=> Tam giác CMA cân tại M .

=> \(\widehat{MAC}=\widehat{MCA}\) ( tính chất tam giác cân )

Ta lại có : \(\widehat{MCA}+\widehat{CBA}=90^o\)\(\widehat{HAB}+\widehat{CBA}=90^o\)

=> \(\widehat{MCA}=\widehat{HAB}\)

=> \(\widehat{MAC}=\widehat{HAC}\) ( đpcm )

b, - Áp dụng hệ thức lượng vào tam giác ACH vuông tại H , HE vuông góc với AC có :

\(AH^2=AE.AC\)

- Áp dụng hệ thức lượng vào tam giác ABH vuông tại H , HD vuông góc với AB có :

\(AH^2=AB.AD\)

=> \(AE.AC=AB.AD\left(=AH^2\right)\)

=> \(\frac{AE}{AB}=\frac{AD}{AC}\)

- Xét \(\Delta AED\)\(\Delta ABC\) có :

\(\left\{{}\begin{matrix}\frac{AE}{AB}=\frac{AD}{AC}\left(cmt\right)\\\widehat{BAC}=90^o\end{matrix}\right.\)

=> \(\Delta AED\) ~ \(\Delta ABC\) ( c - g - c )

=> \(\widehat{AED}=\widehat{ABC}\) ( góc tương ứng )

\(\widehat{ABC}+\widehat{ACB}=90^o\)

=> \(\widehat{AED}+\widehat{ACB}=90^o\)

\(\widehat{MAC}=\widehat{MCA}\) ( cmt câu a )

=> \(\widehat{MAC}+\widehat{AED}=90^o\)

Ta lại có : \(\widehat{MAC}+\widehat{AED}+\widehat{EIA}=180^o\)

=> \(\widehat{EIA}=90^o\)

Vậy AM vuông góc với ED tại K .