Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta\)ABC có: DA=DB(gt)
EA=EC(gt)
=> DE là đường trung bình của \(\Delta\)ABC
=> DE//BC
Xét tứ giác BDEC có: DE//BC
=> Tứ giác BDEC là hình thang
Mà:^B=^C (gt)
=> Tứ giác BDEC là hình thang cân
b)Vì DE là đường trung bình của tam giác ABC
=>\(DE=\frac{1}{2}BC=\frac{1}{2}\cdot8=4\)
a) Xét ΔABC có
\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\left(AB=AC;AD=AE\right)\)
D\(\in\)AB(gt)
E\(\in\)AC(gt)
Do đó: DE//BC(Định lí Ta lét đảo)
Xét tứ giác BDEC có DE//BC(cmt)
nên BDEC là hình thang(Định nghĩa hình thang)
Hình thang BDEC(DE//BC) có \(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)
nên BDEC là hình thang cân(Dấu hiệu nhận biết hình thang cân)
a, Vì D,E là trung điểm AB,AC nên DE là đtb tg ABC
Do đó DE//BC hay BDEC là hthang
b, Vì E là trung điểm AC và DM nên AMCD là hbh
c, Để AMCD là hcn thì \(\widehat{ADC}=90^0\) hay CD là đường cao tam giác ABC
Mà CD là trung tuyến tam giác ABC
Do đó để AMCD là hcn thì tam giác ABC cân tại C
a: Xét ΔABC có
D,E lần lượt là trung điểm của AB,AC
=>DE là đường trung bình của ΔABC
=>DE//BC và \(DE=\dfrac{1}{2}BC\)
Xét tứ giác BDEC có DE//BC
nên BDEC là hình thang
b: Xét ΔABC có
D,F lần lượt là trung điểm của BA,BC
=>DF là đường trung bình của ΔABC
=>DF//AC và \(DF=\dfrac{AC}{2}\)
DF//AC
E\(\in\)AC
Do đó: DF//AE
Ta có: \(DF=\dfrac{AC}{2}\)
\(AE=\dfrac{AC}{2}\)
Do đó: DF=AE
Xét tứ giác ADFE có
DF//AE
DF=AE
Do đó: ADFE là hình bình hành
Xét tứ giác AFBI có
D là trung điểm chung của AB và FI
=>AFBI là hình bình hành