Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình em tự vẽ nha.
a, \(\Delta ABC\)cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB},AB=AC\)
Ta có: CN là phân giác của \(\widehat{ACB}\Rightarrow\widehat{ACN}=\widehat{NCB}=\frac{1}{2}\widehat{ACB}\)
BM là phân giác của \(\widehat{ABC}\Rightarrow\widehat{ABM}=\widehat{MBC}=\frac{1}{2}\widehat{ABC}\)
mà \(\widehat{ABC}=\widehat{ACB}\left(cmt\right)\)
\(\Rightarrow\widehat{NCB}=\widehat{MBC}\)
\(\Delta IBC\)có: \(\widehat{ICB}=\widehat{IBC}\left(cmt\right)\Rightarrow\Delta IBC\)cân tại I \(\Rightarrow IB=IC\)
b, Xét \(\Delta BNC\)và \(\Delta CMB\)có:
\(\widehat{NBC}=\widehat{MCB}\left(cmt\right)\)
\(BC\)chung
\(\widehat{NCB}=\widehat{MBC}\left(cmt\right)\)
\(\Rightarrow\Delta BNC=\Delta CMB\left(g-c-g\right)\)
c, Xét \(\Delta IAB\)và \(\Delta IAC\)có:
\(AI\)chung
\(AB=AC\left(cmt\right)\)
\(IB=IC\left(cmt\right)\)
\(\Rightarrow\Delta IAB=\Delta IAC\left(c-c-c\right)\)\(\Rightarrow\widehat{CAI}=\widehat{IAB}\Rightarrow\)AI là phân giác của \(\widehat{CAB}\)
Gọi giao của BNvà CM là I
góc IBC+góc ICB=1/2(góc ABC+góc ACB)=60 độ
=>góc BIC=120 độ
=>góc BIM=góc CIN=60 độ
Kẻ IK là phân giác của góc BIC
=>góc BIK=góc CIK=120/2=60 độ
Xét ΔBMI và ΔBKI có
góc MBI=góc KBI
BI chung
góc MIB=góc KIB
=>ΔBMI=ΔBKI
=>BM=BK
Xét ΔCKI và ΔCNI có
góc KCI=góc NCI
Ci chung
góc CIK=góc CIN
=>ΔCKI=ΔCNI
=>CK=CN
=>BM+CN=BC
a) Xét \(\Delta ABC\) có tia phân giác \(BAC,ACB\) cắt nhau tại O suy ra O là giao điểm của 3 đường phân giác trong tam giác ABC suy ra BO là phân giác của \(\widehat{CBA}\) (tính chất 3 đường phân giác của tam giác)
\(\Rightarrow DBO=ABO=\dfrac{DBA}{2}\left(1\right)\) ( tính chất tia phân giác )
Lại có BF là phân giác của \(\widehat{ABx\left(gt\right)}\) \(=ABF=FBx\left(2\right)\)
( tính chất của tia phân giác )
Mà \(ABD+ABx=180^o\left(3\right)\left(kềbu\right)\)
Từ \(\left(1\right)\left(2\right)\left(3\right)\Rightarrow OBA+ABF=180^o\div2=90^o\Rightarrow BO\text{⊥ }BF\)
b) Ta có \(FAB+BAC=180^o\)( kề bù ) mà \(BAC=120^o\left(gt\right)\Rightarrow FAB=60^o\)
\(\Rightarrow\text{AD là phân giác của}\widehat{BAC}\) ( dấu hiệu nhận biết tia phân giác )
\(\Rightarrow BAD=CAD=60^o\) ( tính chất tia phân giác )
\(\Rightarrow FAy=CAD=60^o\) ( đối đỉnh ) \(\Rightarrow FAB=FAy=60^o\Rightarrow\) AF là tia phân giác của \(BAy\) ( dấu hiệu nhận biết tia phân giác )
Vậy \(\Delta ABD\) có hai tia phân giác của hai góc ngoài tại đỉnh A và đỉnh B cắt nhau tại F nên suy ra DF là phân giác của \(ADB=BDF=ADF\) ( tính chất tia phân giác )
c) Xét \(\Delta ACD\) có phân giác góc ngoài tại đỉnh A và phân giác trong tại đỉnh C cắt nhau tại E nên suy ra DE cũng là phân giác của \(ADB\Rightarrow\)\(D,E,F\) thẳng hàng
thật là ngược mộ nha
dù không biết đúng hay sai nhưng lâu lắm mới thấy người làm nguyên một bài toán hình thế này mà còn có hình nữa