Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: Xét ΔACB có AD là phân giác
nên BD/AB=CD/AC
=>BD/3=CD/4
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{10}{7}\)
Do đó:BD=30/7cm; CD=40/7cm
a) Ta có: \(BC^2=5^2=25\)
\(AB^2+AC^2=3^2+4^2=25\)
Do đó: \(BC^2=AB^2+AC^2\)(=25)
Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)
nên ΔABC vuông tại A(Định lí Pytago đảo)
a, Xét ΔABC có góc BAC vuông
=> \(BC^2=AB^2+AC^2\)
=> \(BC^2=25\)
\(\Rightarrow BC=5\) (cm)
Xét ΔABC và ΔDAC, có
\(\widehat{BAC}=\widehat{ADC}\)
\(\widehat{C}\) chung
=> ΔABC∼ΔDAC(g.g)
=> \(\dfrac{AD}{AB}=\dfrac{AC}{BC}\)
=>\(\dfrac{AD}{3}=\dfrac{4}{5}\)
\(\Rightarrow AD=2,4cm\)
b, Vì ΔABC∼ΔDAC (cmt)
=>\(\dfrac{AC}{BA}=\dfrac{DC}{AC}\)
Xét ΔADB và ΔADC, có:
+ \(\widehat{ADC}=\widehat{ADB}\) (=90 độ)
+ \(\dfrac{AC}{BA}=\dfrac{DC}{AC}\)
=> ΔADB∼ΔADC (c.g.c)
=> \(\dfrac{AD}{BD}=\dfrac{DC}{AD}\)
\(\Rightarrow AD.AD=BD.DC\)
=> \(AD^2\)= BD.DC(đpcm)
+xét tam giác ABC vuông tại A:
=> BC2=AC2+AB2(Định lý pytago)
hay BC2=16+9
BC2= 25
Mà BC>0
=> BC=5(cm)
+xét tam giác ABH vuông tại H và tam giác ABC vuông tại A có:
GÓC B: góc chung
góc A=góc H=90độ (tam giác ABC vuông tại A,AH:đường cao)
=> tam giác ABH đồng dạng với tam giác ABC(góc-góc)
=> BH/AB=BA/BC(các cặp cạnh tương ứng tỉ lệ)
hay BH/3=3/5
=> BH=1,8(cm)
=> HC=5-1,8=4,8(cm)
p/s: mình thấy sai sai , vì sao có dữ liệu phân giác góc C mà lại không dùng đến(bạn tham khảo thử bài mình thôi nhé).Các góc,đồng dạng,độ , bạn cùng kí hiệu.Thông cảm hình mình vẽ hơi tởm=))