Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\)
=>1/2*6*AC=24
=>AC*3=24
=>AC=8cm
=>BC=10cm
AH=6*8/10=4,8cm
H=8^2/10=6,4cm
S AHC=1/2*4,8*6,4=15,36cm2
\(AB=\sqrt{\left(1+8\right)^2+\left(3-1\right)^2}=\sqrt{9^2+2^2}=\sqrt{85}\)
\(AC=\sqrt{\left(1-2\right)^2+\left(3+1\right)^2}=\sqrt{17}\)
\(BC=\sqrt{\left(-7-2\right)^2+\left(1+1\right)^2}=\sqrt{85}\)
Chu vi của tam giác ABC là:
\(C_{ABC}=AB+AC+BC\)
\(=2\sqrt{85}+\sqrt{17}\left(đvđd\right)\)
Nửa chu vi tam giác ABC là:
\(P_{ABC}=\dfrac{C_{ABC}}{2}=\dfrac{2\sqrt{85}+\sqrt{17}}{2}\)
Diện tích tam giác ABC là:
\(S_{ABC}=\sqrt{P\cdot\left(P-AB\right)\cdot\left(P-AC\right)\cdot\left(P-BC\right)}\)
\(=\sqrt{\dfrac{2\sqrt{85}+\sqrt{17}}{2}\cdot\left(\dfrac{2\sqrt{85}+\sqrt{17}}{2}-\dfrac{2\sqrt{85}}{2}\right)^2\cdot\left(\dfrac{2\sqrt{85}+\sqrt{17}}{2}-\dfrac{2\sqrt{17}}{2}\right)}\)
\(=\sqrt{\dfrac{2\sqrt{85}+\sqrt{17}}{2}\cdot\dfrac{2\sqrt{85}-\sqrt{17}}{2}\cdot\dfrac{17}{4}}\)
\(=\sqrt{\dfrac{323\cdot17}{16}}=\dfrac{17\sqrt{19}}{4}\left(đvdt\right)\)
a. + CH = 10 - 3.6 = 6.4 (cm)
- Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông vào ΔABC ta có :
+ \(AH^2=BH.CH\)
\(\Rightarrow AH=\sqrt{BH.CH}=\sqrt{3,6.6,4}=4.8\) (cm)
+ \(AB^2=BC.BH\)
\(\Rightarrow AB=\sqrt{BC.BH}=\sqrt{10.3,6}=6\) (cm)
+ \(AC^2=BC.CH\)
\(\Rightarrow AC=\sqrt{BC.CH}=\sqrt{10.6,4}=8\) (cm)
b. \(S_{ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.6.8=24\left(cm^2\right)\)
c. \(P_{ABC}=AB+AC+BC=6+8+10=24\left(cm\right)\)
AB = sqrt((6 + 3)^2 + (5 - 5)^2) = 9
AC = sqrt((1 + 3)^2 + (0 - 5)^2) = sqrt(41)
BC = sqrt((1 - 6)^2 + (0 - 5)^2) = 5sqrt(2)
Chu vi tam giác ABC:
AB + BC + AC = 9 + 5sqrt(2) + sqrt(41) ~~ 22,474 (đvđd)
Diện tích tam giác ABC: (dùng công thức Hê-rông): 22,5(đvdt)