Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét \(\Delta ABC\) có \(\widehat{B}=\widehat{C};\widehat{A}=50^0\)
\(\Leftrightarrow\widehat{B}=\widehat{C}=\dfrac{180^0-50^0}{2}=65^0\)\(\left(1\right)\)
b, Xét \(\Delta ADE\) có : \(AD=AE\)
\(\Leftrightarrow\widehat{D1}=\widehat{E1}=\dfrac{180^0-50^0}{2}=65^0\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\widehat{B}=\widehat{D1}\)
mà đây là 2 góc đồng vị
=> đpcm
A,
xét \(\Delta ABD\)và \(\Delta ACD\)
CÓ \(\hept{\begin{cases}AB=AC\\chungAD\\BD=DC\end{cases}}\)
SUY RA \(\Delta ABD\)=\(\Delta ACD\) (C.C.C) (1)
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)
MÀ \(\widehat{BDA}\)+\(\widehat{CDA}\)=180
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)=90
B, (1) => BC=DC=1/2 BC=8
ÁP DỤNG ĐỊNH LÍ PITAGO TA CÓ
\(AB^2=AD^2+BD^2\)
=> AD^2=36
=>AD=6