K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2018

Áp dụng định lí cosin trong tam giác ta có:

  c 2 = 2 2 + 2 2 2 − 2.2.2 2 . cos 135 ° = 4 + 8 − 2.2.2 2 . − 1 2 = 20

c = 2 5

Chọn D

Câu 1: Cho tam giác abc biết a=6,b=4,c=8 . Độ dài đường cao từ đỉnh A là 3.Tính diện tích tam giác ?A. 6     B.12       C.9         D.15Câu 2: Cho tam giác abc biết a=4, b=5, góc C=60 độ. Diện tích tam giác bằng bao nhiêu?A.10     B.\(\sqrt{84}\)  C.42       D.15Câu 3. Một tam giác có ba cạnh là 13, 14, 15.Diện tích tam giác bằng bao nhiu?A.84       B.\(\sqrt{84}\)     C.42       D.\(\sqrt{168}\)Câu 4: Tam giác...
Đọc tiếp

Câu 1: Cho tam giác abc biết a=6,b=4,c=8 . Độ dài đường cao từ đỉnh A là 3.Tính diện tích tam giác ?

A. 6     B.12       C.9         D.15

Câu 2: Cho tam giác abc biết a=4, b=5, góc C=60 độ. Diện tích tam giác bằng bao nhiêu?

A.10     B.\(\sqrt{84}\)  C.42       D.15

Câu 3. Một tam giác có ba cạnh là 13, 14, 15.Diện tích tam giác bằng bao nhiu?

A.84       B.\(\sqrt{84}\)     C.42       D.\(\sqrt{168}\)

Câu 4: Tam giác với ba cạnh là 5, 12, 13 có bán kính đường tròn ngoại tiếp bằng bao nhiu ?

A. 6        b. 8     C.\(\frac{13}{2}\)D.\(\frac{11}{2}\)

Câu 5. Tam giác với ba cạnh 3,4,5 có bán kính đường tròn nội tiếp tam giác đó bằng bao nhiu?

A.1       b.\(\sqrt{2}\)        c. \(\sqrt{3}\)        D.2   

Câu 6: Cho tam giác ABC có a+b2 -c2 > 0. Khi đó góc C là ?

A. Góc C > 90 độ       B. Góc C < 90 độ    C.Góc C = 90  độ             D. Không có kết luận

Dạ e xin chào các anh, chị. Em mong anh/chị hãy giúp e làm bài ở trên và chỉ em cách làm ra được đáp án đó. Em xin chân thành

cảm ơn rất nhiều . Vì em sắp thi rồi nên một số câu hỏi e vẫn không làm được . Mong a/c giúp e nhiệt tình nha ^-^

0
28 tháng 2 2020

B

29 tháng 2 2020

Bạn có thể giải thíc cho mik dk kk

30 tháng 3 2017

a)Ta có BĐT tam giác :

\(\left\{{}\begin{matrix}a+b>c\\a+c>b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b-c>0\\a+c-b>0\end{matrix}\right.\)

\(\Rightarrow\left[a+\left(b+c\right)\right]\left[a-\left(b-c\right)\right]>0\)

\(\Rightarrow a^2-\left(b-c\right)^2>0\Rightarrow a^2>\left(b-c\right)^2\)

b)Áp dụng BĐT ở câu a ta có:

\(a^2+b^2+c^2>\left(b-c\right)^2+\left(a-c\right)^2+\left(a-b\right)^2\)

\(\Leftrightarrow a^2+b^2+c^2>b^2+c^2-2bc+a^2+c^2-2ac+a^2+b^2-2ab\)

\(\Leftrightarrow2ab+2bc+2ca>2a^2+2b^2+2c^2\)

\(\Leftrightarrow ab+bc+ca>a^2+b^2+c^2\)

1 tháng 4 2017

ủa anh ơi bài b) kêu chứng minh là \(a^2+b^2+c^2< 2\left(ab+bc+ca\right)\) sao anh lại đi chứng minh \(a^2+b^2+c^2< ab+bc+ca\) ở cuối bài .-.

NV
9 tháng 2 2020

a/ Với mọi số thực ta luôn có:

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

Lại có do a;b;c là ba cạnh của 1 tam giác nên theo BĐT tam giác ta có:

\(a+b>c\Rightarrow ac+bc>c^2\)

\(a+c>b\Rightarrow ab+bc>b^2\)

\(b+c>a\Rightarrow ab+ac>a^2\)

Cộng vế với vế: \(2\left(ab+bc+ca\right)>a^2+b^2+c^2\)

NV
9 tháng 2 2020

b/

Do a;b;c là ba cạnh của tam giác nên các nhân tử vế phải đều dương

Ta có:

\(\left(a+b-c\right)\left(b+c-a\right)\le\frac{1}{4}\left(a+b-c+b+c-a\right)^2=b^2\)

Tương tự: \(\left(a+b-c\right)\left(a+c-b\right)\le a^2\)

\(\left(b+c-a\right)\left(a+c-b\right)\le c^2\)

Nhân vế với vế:

\(a^2b^2c^2\ge\left(a+b-c\right)^2\left(b+c-a\right)^2\left(a+c-b\right)^2\)

\(\Leftrightarrow abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(a+c-b\right)\)