K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: vecto AC=(4;-4)=(1;-1)

Phương trìh tham số là:

x=-1+t và y=2-t

b: Tọa độ N là:

\(\left\{{}\begin{matrix}x=\dfrac{-1+3}{2}=\dfrac{2}{2}=1\\y=\dfrac{2-2}{2}=0\end{matrix}\right.\)

N(1;0); B(-2;-1)

vecto BN=(3;1)

Phương trình tham số là:

x=1+3t và y=0+t=t

c: vecto BC=(5;-1)

=>vecto AH=(1;5)

Phương trình tham số AH là:

x=-1+t và y=2+5t

 

a: (Δ)//d nên Δ: -x+2y+c=0

=>VTPT là (-1;2)

=>VTCP là (2;1)

PTTS là:
x=3+2t và y=1+t

b: (d): -x+2y+1=0

=>Δ: 2x+y+c=0

Thay x=4 và y=-2 vào Δ, ta được:

c+8-2=0

=>c=-6

 

a: vecto AB=(2;2)=(1;1)

=>VTPT là (-1;1)

Phương trình tham số AB là: \(\left\{{}\begin{matrix}x=-1+t\\y=0+t=t\end{matrix}\right.\)

Phương trình tổng quát của AB là:

-1(x+1)+1(y-0)=0

=>-x-1+y=0

=>x-y+1=0

b: vecto BC=(2;0)

Vì AH vuông góc BC

nên AH nhận vecto BC làm vtpt và đi qua A

=>AH: 2(x+1)+0(y-0)=0

=>2x+2=0

=>x=-1

c: Tọa độ M la:

x=(-1+3)/2=2/2=1 và y=(0+2)/2=1

B(1;2); M(1;1)

vecto BM=(0;-1)

=>VTPT là (1;0)

Phương trình BM là:

1(x-1)+0(y-2)=0

=>x-1=0

=>x=1

9 tháng 2 2023

giúp em nốt câu d,e với ạ 🥹

a: Δ có vtcp là (2;-1) và đi qua A(1;-3)

=>VTPT là (1;2)

PTTQ là:

1(x-1)+2(y+3)=0

=>x-1+2y+6=0

=>x+2y+5=0

b: Vì d vuông góc Δ nên d: 2x-y+c=0

Tọa độ giao của d1 và d2 là:

x+2y=8 và x-2y=0

=>x=4 và y=2

Thay x=4 và y=2 vào 2x-y+c=0, ta được

c+2*4-2=0

=>c=-2

AH
Akai Haruma
Giáo viên
27 tháng 2 2021

Lời giải:Điểm M,N có vẻ không có vai trò gì trong bài toán. 

Ta có: $\overrightarrow{u_{\Delta}}=(2,-1)$

$\overrightarrow{u_{d'}}=(a,b)$

\(\cos (\Delta, d')=\frac{\overrightarrow{u_{\Delta}}.\overrightarrow{u_d'}}{|\overrightarrow{u_{\Delta}}||\overrightarrow{u_d'}|}=\frac{2a-b}{\sqrt{a^2+b^2}.\sqrt{5}}=\cos 45^0=\frac{\sqrt{2}}{2}\)

$\Rightarrow a=3b$ hoặc $a=-\frac{b}{3}$

PTĐT $d'$ là:

$-x+3y=0$ hoặc $3x+y=0$

27 tháng 2 2021

Tại sao từ cos 450=\(\dfrac{\sqrt{2}}{2}\) thì lại => a=3b hoặc a=\(\dfrac{-b}{3}\) ạ ?

 

Bài 1. Viết phương trình tổng quát, phương trình tham số của đường thẳng trong mỗi trường hợp sau:a) Đi qua A(1;-2) và // với đường thẳng 2x - 3y - 3 = 0.b) Đi qua hai điểm M(1;-1) và N(3;2).c) Đi qua điểm P(2;1) và vuông góc với đường thẳng x - y + 5 = 0.Bài 2. Cho tam giác ABC biết A(-4;1), B(2;4), C(2;-2).Tính khoảng cách từ điểm C đến đường thẳng AB.Bài 3. Cho tam giaùc ABC coù: A(3;-5), B(1;-3), C(2;-2).Vieát...
Đọc tiếp

Bài 1. Viết phương trình tổng quát, phương trình tham số của đường thẳng trong mỗi trường hợp sau:

a) Đi qua A(1;-2) và // với đường thẳng 2x - 3y - 3 = 0.

b) Đi qua hai điểm M(1;-1) và N(3;2).

c) Đi qua điểm P(2;1) và vuông góc với đường thẳng x - y + 5 = 0.
Bài 2. Cho tam giác ABC biết A(-4;1), B(2;4), C(2;-2).

Tính khoảng cách từ điểm C đến đường thẳng AB.

Bài 3. Cho tam giaùc ABC coù: A(3;-5), B(1;-3), C(2;-2).Vieát phöông trình toång quaùt cuûa:

a)   3 caïnh AB, AC, BC

b) Ñöôøng thaúng qua A vaø song song vôùi BC

c)Trung tuyeán AM vaø ñöôøng cao AH cuûa tam giaùc ABC

d) Ñöôøng thaúng qua troïng taâm G cuûa tam giaùc ABC vaø vuoâng goùc vôùi AC

e) Ñöôøng trung tröïc cuûa caïnh BC

Bài 4. Cho tam giaùc ABC coù: A(1 ; 3), B(5 ; 6), C(7 ; 0).:

a)  Vieát phöông trình toång quaùt cuûa 3 caïnh AB, AC, BC

b)  Viết phương trình đđöôøng trung bình song song cạnh AB

c) Viết phương trình đường thẳng qua A và cắt hai trục tọa độ tại M,N sao cho AM = AN

d) Tìm tọa độ điểm A’ là chân đường cao kẻ từ A trong  tam giaùc ABC   

Bài 5. Viết phương trình đường tròn có tâm I(1; -2) và

a) đi qua điểm A(3;5).

b) tiếp xúc với đường thẳng có pt x + y = 1.

 

0
NV
2 tháng 4 2020

Đặt \(\left\{{}\begin{matrix}\frac{1}{x+3y-1}=X\\\frac{1}{2x-y+3}=Y\end{matrix}\right.\)

Hệ phương trình trở thành:

\(\left\{{}\begin{matrix}2X-Y=5\\X+2Y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4X-2Y=10\\X+2Y=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5X=15\\X+2Y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}X=3\\Y=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{x+3y-1}=3\\\frac{1}{2x-y+3}=1\end{matrix}\right.\) (nhân chéo) \(\Leftrightarrow\left\{{}\begin{matrix}x+3y-1=\frac{1}{3}\\2x-y+3=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+3y=\frac{4}{3}\\2x-y=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+3y=\frac{4}{3}\\6x-3y=-6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+3y=\frac{4}{3}\\7x=-\frac{14}{3}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-\frac{2}{3}\\y=\frac{2}{3}\end{matrix}\right.\)

Vậy nghiệm của hệ là \(\left(x;y\right)=\left(-\frac{2}{3};\frac{2}{3}\right)\)

NV
23 tháng 3 2022

Đường phân giác của góc phần tư thứ nhất có 1 vtcp là (1;1)

\(\Rightarrow\) d cũng nhận (1;1) là 1 vtcp

Phương trình: \(\left\{{}\begin{matrix}x=-3+t\\y=5+t\end{matrix}\right.\)