Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác BHCD có
BH//CD
BD//CH
Do đó: BHCD là hình bình hành
a) Xét tứ giác BHCD có:
M là trung điểm BC
M là trung điểm HD(H đối xứng D qua M)
=> BHCD là hbh
b) Gọi E, F lần lượt là giao điểm CH với AB và BH với AC
=> BF và CE là đường cao tam giác ABC
\(\Rightarrow\left\{{}\begin{matrix}BF\perp AC\\CE\perp AB\end{matrix}\right.\)
Mà CD//BF,BD//CE(BHCD là hbh)
=> \(\left\{{}\begin{matrix}BD\perp AB\\CD\perp AC\end{matrix}\right.\)
=> Tam giác ABD vuông tại B và tam giác ACD vuông tại C
a: Xét tứ giác BHCI có
E là trung điểm của BC
E là trung điểm của HI
Do đó: BHCI là hình bình hành
a: Xét tứ giác BHCD có
BH//CD
BD//CH
DO đó: BHCD là hình bình hành
1/ Ttứ giác BHCE có HE giao CD tại trung điểm D của cả 2 đoạn
---> Hình bình hành
2/ Vì H là trực tâm tam giác ABC
--> HC vuông góc AB
mà HC // BE do t/c cạnh đối của hình bình hành
---> đpcm
3/ Nối ID
Chứng minh được ID là đường trung bình tam giác AHE
---> ID vuông góc BC tại D, D là trung điểm BC
Gọi K là trung điểm AC
Chứng minh được IK lả đường trung bình của tam giác ACE
---> IK // CE
suy ra IK vuông góc AC tại trung điểm K của AC
Vậy.....
dễ ẹc!!!!!!!!
làm hộ tui với