K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2021

Từ A dựng đường thẳng vuông góc với BC căt BC tại M

Xét tg vuông ABM và tg vuông BDH có

\(BD\perp BA;HB\perp AM\Rightarrow\widehat{HBD}=\widehat{MAB}\) (góc có cạnh tương ứng vuông góc)

\(BD=BA\left(gt\right)\)

\(\Rightarrow\Delta BDH=\Delta ABM\) (hai tg vuông có cạnh huyền và 1 góc nhọn tương ứng bằng nhau)

\(\Rightarrow DH=BM\)

Chứng minh tương tự ta cũng có \(EK=CM\)

\(\Rightarrow DH+EK=BM+CM=BC\left(đpcm\right)\)

13 tháng 1 2017

A B C D H K E F

Kẻ đường cao AF.

Vì BD \(\perp\) BA nên \(\widehat{DBA}\) = 90o

Ta có: \(\widehat{DBH}\) + \(\widehat{DBA}\) + \(\widehat{ABF}\) = 180o

=> \(\widehat{DBH}\) + \(\widehat{ABF}\) = 90o (1)

Áp dụng tính chất tam giác vuông ta có:

\(\widehat{ABF}\) + \(\widehat{BAF}\) = 90o (2)

Từ (1) và (2) suy ra:

\(\widehat{DBH}\) + \(\widehat{ABF}\) = \(\widehat{ABF}\) + \(\widehat{BAF}\)

=> \(\widehat{DBH}\) = \(\widehat{BAF}\)

Xét \(\Delta\)BHD vuông tại H và \(\Delta\)AFB vuông tại F có:

BD = AB (gt)

\(\widehat{DBH}\) = \(\widehat{BAF}\) (c/m trên)

=> \(\Delta\)BHD = \(\Delta\)AFB (ch - gn)

=> DH = BF (2 cạnh t/ư) (3)

Chứng minh tương tự:

\(\Delta\)EKC = \(\Delta\)CFA (ch - gn)

=> EK = CF (2 cạnh t/ư) (4)

Ta có: BF + CF = BC (5)

Thay (3); (4) vào (5) ta được:

DH + EK = BC \(\rightarrow\) đpcm

16 tháng 9 2023

L

30 tháng 9 2017

Cho tam giác ABC có góc B và góc C nhọn, AB < AC, đường cao AH. Vẽ đường thẳng BD = BA, BD vuông góc với BA sao cho C và D khác phía đối với AB. Vẽ đoạn thẳng CE = CA , CE vuông góc với CA sao cho B và E khác phía đối với AC. Kẻ DI vuông góc với BC tại I và EK vuông góc với BC tại K. Chứng minh :  1) góc ABH phụ với góc DBI  2) góc ABH = góc BDI và góc BAH = góc DBI  3) tam giác ABH = tam giác DBI  4) tam giác ACH = tam giác CEK  5) BI = CK 

trình bày bài này lâu lém

tự vận dụng kiến thức mà làm

suy nghĩ đi

động não đi

30 tháng 9 2017

thế tớ hỏi làm gì bạn hay quá nhờ =)))

13 tháng 2 2022

undefined

Hình vẽ đây em nhé. Sửa lại câu hỏi không có nói chứng minh gì nên a không giải được đâu nhé

a: ta có: \(\widehat{KCE}=\widehat{ACB}\)(hai góc đối đỉnh)

\(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)

Do đó: \(\widehat{KCE}=\widehat{ABC}\)

Xét ΔDHB vuông tại H và ΔEKC vuông tại K có

BD=CE

\(\widehat{DBH}=\widehat{ECK}\)

Do đó: ΔDHB=ΔEKC

=>BH=CK

 

18 tháng 2 2023

Em ơi em nhập lại câu hỏi nha!