Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C N M D H I
a, xét tam giác AMB và tam giác NMC có :
BM = MC do M là trung điểm của BC (gt)
AM = NM do M là trung điểm của AN (Gt)
góc AMB = góc NMC (đối đỉnh)
=> tam giác AMB = tam giác NMC (c-g-c)
b, tam giác AMB = tam giác NMC (câu a)
=> góc ABM = góc MCN (đn)
c, tam giác AMB = tam giác NMC (câu a)
=> BA = CN (đn) (1)
xét tam giác BAH và tam giác BIH có : BH chung
góc BHA = góc BHI = 90 (gt)
HI = HA (Gt)
=> tam giác BAH = tam giác BIH (2cgv)
=> BI = BA (đn) (2)
(1)(2) => BI = CN
a) Xét ∆ABM và ∆CMN ta có :
AM = MN
BM = MC
AMB = CMN ( đối đỉnh)
=> ∆ABM = ∆CMN (c.g.c)
b) Vì ∆ABM = ∆CMN (cmt)
=> ABM = NCM
Mà 2 góc này ở vị trí so le trong
=> AB //NC
=> DB // NC
Ta có : BDC + DCN = 180° ( kề bù)
=> DCN = 90°
c) Xét ∆ vuông ABH và ∆vuông IHB ta có :
AH = HI
BH chung
=> ∆ABH = ∆IHB ( 2 cạnh góc vuông)
=> BA = BI
Mà AB = CN (cmt)
=> BI = CN ( cùng bằng BA)

Hình bạn tự vẽ nhé
a) Xét ΔABM và ΔACM có:
AB=AC (gt)
AM là cạnh chung
BM=CN (M là trung điểm của BC)
=> ΔABM=ΔACM (c-c-c)
=> \(\widehat{AMB}=\widehat{AMC}\) (2 góc tương ứng)
Mà ta có: \(\widehat{AMB}+\widehat{AMC}=90^o\)
=> \(\widehat{AMB}+\widehat{AMB}=180^o\)
=> \(\widehat{AMB}=90^o\)
=> AM vuông góc với BC
b) Theo câu a ta có: ΔABM=ΔACMB
=> \(\widehat{ABM}=\widehat{ACM}\)
Mà: \(\widehat{ABD}=180^o-\widehat{ABM}=180^o-\widehat{ACM}=\widehat{ACE}\)
Xét ΔABD và ΔACE có:
AB=AC (gt)
\(\widehat{ABD}=\widehat{ACE}\) (chứng minh trên)
BD=CE (gt)
=> ΔABD=ΔACE (c-g-c)
=> \(\widehat{BAD}=\widehat{CAE}\) (2 góc tương ứng)
Cũng theo câu a thì ΔABM=ΔACM
=> \(\widehat{BAM}=\widehat{CAM}\)
=> \(\widehat{BAM}+\widehat{BAD}=\widehat{CAM}+\widehat{CAE}\)
=> \(\widehat{DAM}=\widehat{EAM}\)
=> AM là tia phân giác của góc DAE

a, xét tam giác AMB và tam giác AMC có : AM chung
BM = CM do M là trung điểm của BC (gt)
AB = AC (gt)
=> tam giác AMB = tam giác AMC (c-c-c)
=> góc AMB = góc AMC (đn)
mà góc AMB + góc AMC = 180 (kb)
=> góc AMB = 90
=> AM _|_ BC (đn)
b, góc ABC = góc ACB do tam giác ABC cân tại A (gt)
góc ABC + góc ABD = 180 (kb)
góc ACB + góc ACE = 180 (kb)
=> góc ABD = góc ACE
xét tam giác ABD và tam giác ACE có : BD = CE (gt)
AB = AC (gt)
=> tam giác ABD = tam giác ACE (c-g-c)

xét tam giác ABE và tam giác ADE
AE chung
góc BAE = góc DAE(AE la tia phân giác của góc E)
AB = AD ( gt)
=> tam giác ABE = tam giac DAE ( c.g.c)
b) xét tam giác ABI và tam giác ADI
AI chung
góc BAE = góc DAE
tam giác ABI=tam giác ADI
=> BI = DI ( 2 cạnh t/ứ )
=> I là trung điểm của BD

a) Xét tam giác AMB và tam giác DMC có:
BM = CM (gt)
AM =DM (gt)
\(\widehat{AMB}=\widehat{DMC}\) (Hai góc đối đỉnh)
\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)
b) Do \(\Delta AMB=\Delta CMD\Rightarrow\widehat{BAM}=\widehat{DCM}\)
Chúng lại ở vị trí so le trong nên AB //CD.
c) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên tam giác AME cân tại M.
Suy ra MA = ME
Lại có MA = MD nên ME = MD.
d) Xét tam giac AED có MA = ME = MD nê tam giác AED vuông tại E.
Suy ra ED // BC
Xét tam giác cân MED có MK là trung tuyến nên đồng thời là đường cao.
Vậy thì \(MK\perp ED\Rightarrow MK\perp BC\)

a, xét tam giác ABH và tam giác MBH có : BH chung
góc AHB = góc MHB = 90
AH = HM do H là trđ của AM
=> tam giác ABH = tam giác MBH (2cgv)
b, tam giác ABH = tam giác MBH (câu a)
=> góc ABH góc MBH (đn)
và AB= BM (đn)
xét tam giác ABC và tam giác MBC có : BC chung
=> tam giác ABC = tam giác MBC (c-g-c)
=> góc BAC = góc BMC (đn)
c, xét tam giác BIA và tam giác CIN có :
góc BIA = góc CIN (đối đỉnh)
BI = IC do I là trđ của BC (gt)
AI = IN do I là trđ của AN (gt)
=> tam giác BIA = tam giác CIN (c-g-c)
=> AB = CN (đn)
AB = MB (Câu b)
=> CN = BM
d, dùng pytago thôi