Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Lấy M, N lần lượt là điểm đối xứng với A qua Ox và Oy
Ta có:
Dấu bằng xảy ra khi M,B,C,N thẳng hàng
Vậy chu vi tam giác ABC nhỏ nhất khi B,C thuộc MN
a) ADME là hình chữ nhật có ba góc vuông
b) Ta có ADME là hình chữ nhật nên OD=OM=OA=OE
xét tam giác MHA vuông tại H có OH là đường trung tuyến nên OH=1/2AH=OA nên tam giác AOH cân
c) xét tam giác DHE có trung tuyến HO bằng 1/2 AM=1/2 DE nên tam giác DHE vuông tại H
d) để DE nhỏ nhất thì AM nhỏ nhất mà AM lớn hơn hoặc bằng AH dấu bằng xảy ra khi M trùng H nghĩa là để DE nhỏ nhất thì M là chân đường cao hạ từ A xuông BC
e) tứ giác DMEA có 4 cạnh bằng nhau bằng 1/2 AB=1/2 AC nên DMEA là hình thoi có 1 góc vuông nên là hình vuông
M là trọng tâm tam giác ABC
GỌi E;F thứ tự là hình chiếu của B,C trên AM và S1;S2;S3 là diện tích các tam giác AMB;AMC;BMC Ta có:
AM.BE+AM.CF AM.BD+AM.CD Hay 2S1+2S2 AM.(BD+CD)=AM.BC
Dấu = xảy ra khi AM vuông góc BC
tương tự có: 2S1+2S3 BM.AC
2S2+2S3 CM.AB
AM.BC+BM.AC+CM.AB 4SABC
dấu = xảy ra khi M là trực tâm tam giác ABC