Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác DHEC có
góc HDC+góc HEC=180 độ
nên DHEC là tứ giác nội tiếp
b: Xét tứ giác ABDE có
góc AEB=góc ADB=90 độ
Do đo; ABDE là tứ giác nội tiếp
a: góc ADH+góc AEH=180 độ
=>ADHE nội tiếp
c: Kẻ tiếp tuyến Ax của (O)
=>góc xAC=góc ABC=góc ADE
=>DE//Ax
=>OA vuông góc DE
a: Xét tứ giác BDHF có
\(\widehat{BDH}+\widehat{BFH}=180^0\)
Do đó: BDHF là tứ giác nội tiếp
Xét tứ giác BCEF có
\(\widehat{BFC}=\widehat{BEC}=90^0\)
Do đó: BCEF là tứ giác nội tiếp
b: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{BAE}\) chung
Do đó: ΔAEB∼ΔAFC
Suy ra: AE/AF=AB/AC
hay \(AE\cdot AC=AB\cdot AF\)
a) Ta có: \(\angle AEB=\angle ADB=90\Rightarrow ABDE\) nội tiếp
b) Vì AK là đường kính \(\Rightarrow\angle ACK=\angle ABK=90\)
\(\Rightarrow\left\{{}\begin{matrix}CK\bot AC\\BK\bot AB\end{matrix}\right.\) mà \(\left\{{}\begin{matrix}BH\bot AC\\CH\bot AC\end{matrix}\right.\Rightarrow\) \(BH\parallel CK,CH\parallel BK\)
\(\Rightarrow BHCK\) là hình bình hành
c) Vì F là giao điểm của CH và AB \(\Rightarrow CF\bot AB\)
Ta có: \(\dfrac{AD}{HD}+\dfrac{BE}{HE}+\dfrac{CF}{HF}=\dfrac{AD.BC}{HD.BC}+\dfrac{BE.AC}{HE.AC}+\dfrac{CF.AB}{HF.AB}\)
\(=\dfrac{S_{ABC}}{S_{HBC}}+\dfrac{S_{ABC}}{S_{AHC}}+\dfrac{S_{ABC}}{S_{AHB}}=S_{ABC}\left(\dfrac{1}{S_{HBC}}+\dfrac{1}{S_{AHC}}+\dfrac{1}{S_{AHB}}\right)\)
\(\ge S_{ABC}.\dfrac{9}{S_{HBC}+S_{HAC}+S_{AHB}}\)(BĐT Schwarz) \(=S_{ABC}.\dfrac{9}{S_{ABC}}=9\)
\(\Rightarrow Q_{min}=9\)
a: góc HDC+góc HEC=180 độ
=>HDCE nội tiếp
góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
c: góc AFH+góc AEH=180 độ
=>AEHF nội tiếp
góc FEH=góc BAD
góc DEH=góc FCB
mà góc BAD=góc FCB
nên góc FEH=góc DEH
=>EH là phân giác của góc DEF
a: Kẻ tiếp tuyến Ax của (O)
Xét (O) có
\(\widehat{xAC}\) là góc tạo bởi tiếp tuyến Ax và dây cung AC
\(\widehat{ABC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{xAC}=\widehat{ABC}\left(1\right)\)
Xét tứ giác BFEC có \(\widehat{BFC}=\widehat{BEC}=90^0\)
nên BFEC là tứ giác nội tiếp
=>\(\widehat{FEC}+\widehat{FBC}=180^0\)
mà \(\widehat{FEC}+\widehat{AEF}=180^0\)(hai góc kề bù)
nên \(\widehat{AEF}=\widehat{ABC}\left(2\right)\)
Từ (1) và (2) suy ra \(\widehat{AEF}=\widehat{xAC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên Ax//FE
Ta có: Ax//FE
OA\(\perp\)Ax
Do đó: OA\(\perp\)FE
b: Gọi giao điểm của AI và (O) là D
Xét (O) có
AO là bán kính
AO cắt (O) tại D
Do đó: AD là đường kính của (O)
Gọi giao điểm của AH với BC là N
Xét ΔABC có
BE,CF là các đường cao
BE cắt CF tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC tại N
Xét (O) có
ΔACD nội tiếp
AD là đường kính
Do đó: ΔACD vuông tại C
Xét (O) có
\(\widehat{ABC}\) là góc nội tiếp chắn cung AC
\(\widehat{ADC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{ABC}=\widehat{ADC}\)
Xét ΔANB vuông tại N và ΔACD vuông tại C có
\(\widehat{ABN}=\widehat{ADC}\)
Do đó: ΔANB~ΔACD
=>\(\widehat{BAN}=\widehat{CAD}\)
=>\(\widehat{BAN}+\widehat{NAD}=\widehat{CAD}+\widehat{NAD}\)
=>\(\widehat{PAE}=\widehat{IAB}\)
Xét ΔAPE và ΔAIB có
\(\widehat{PAE}=\widehat{IAB}\)
\(\widehat{AEP}=\widehat{ABI}\)
Do đó: ΔAPE~ΔAIB