Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tứ giác BCDE có:
góc BEC = 90 độ
góc BDC = 90 độ
=>góc BEC=BDC
=>tứ giác BCDE nt
xét tứ giác ADHE có:
góc AEH = 90 độ
góc ADH=90 độ
=>AEH+ADH=180
=>tứ giác ADHE nt
b, vì tứ giác EDCB nt(cmt)
=>góc AED=ACB
xet tam giác AED và ACB có:
góc EAD chung
góc AED=ACB
=>2 tam giác này đồng dạng vs nhau
=>AE/AC=AD/AB
=>AD.AC=AE.AB
C, ta có :góc xAB=ACB
mak góc góc ACB=AED(cmt)
=>góc xAB=AED
=>Ax//ED
Cho tam giác nhọn ABC nội tiếp trong (O;R) có BD và CE là các đường cao. Cho góc A = 60 độ, tính theo R diện tích tứ giác OEAD
Có thể giải như sau:
Tam giác vuông ABD có ^BAD = 60o => AD = AB/2
Dễ thấy tg vuông ABD đồng dạng với tg vuông ACE => AD/AE = AB/AC => AD/AB = AE/AC => tg AED đông dạng tam giác ABC ( vì có chung góc A) => ED/BC = ADAB = 1/2 => ED = BC/2
Dễ tính được BC = RV3 => ED = RV3/2
Mặt khác : Vẽ đường kính AF => BF//CE (vì cùng _I_ với AB). Dễ thấy BCDE nội tiếp => ^BDE = ^BCE (cùng chắn cung BE) = ^CBF ( so le trong) = ^CAF (cùng chắn cung CF của (O) ) => AF _I_ DE ( vì đã có AD _I_ BD)
Vậy S(OEAD) = AO.ED/2 = R^2V3/4 => R = V(4SV3/3)
p/s:tham khảo
a: Xét tứ giác BEDC co
góc BEC=góc BDC=90 độ
nên BEDC là tứ giác nội tiếp
=>góc BED+góc BCD=180 độ
=>góc AED=góc ACB
Xét ΔAED và ΔACB có
góc AED=góc ACB
góc EAD chung
Do đó: ΔAED đồng dạng với ΔACB
b: góc xAC=góc ABC
=>góc xAC=góc ADE
=>Ax//DE
tứ giác AECF có góc AEC=AFC là 2 góc kề nhìn cạnh AC nên nt đg tròn
b) ta có : góc ABK =0,5 sđ cung AK=90 độ
xet tam giac ABK và AFC có
góc ABK=góc AFC=90 độ
goc AKB =góc ACF (GÓC NT CHAN CUNG AB)
=>Tam giác ABK đồng dạng vs tam giác AFC(G.G)
Tứ giác AECF có góp AEC=ACF laf2 góc kề nhìn cạnh AC nên nối tiếp đường tròn
B)Ta có:Góc ABK=0,5 sđ cùng AK=90 độ
Xét tam giác ABK
a: Xét tứ giác ADHK có
\(\widehat{ADH}+\widehat{AKH}=90^0+90^0=180^0\)
=>ADHK là tứ giác nội tiếp
Xét tứ giác BDKC có \(\widehat{BDC}=\widehat{BKC}=90^0\)
nên BDKC là tứ giác nội tiếp
b: Xét (O) có
\(\widehat{xAC}\) là góc tạo bởi tiếp tuyến Ax và dây cung AC
\(\widehat{ABC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{xAC}=\widehat{ABC}\)
mà \(\widehat{ABC}=\widehat{AKD}\left(=180^0-\widehat{DKC}\right)\)
nên \(\widehat{xAC}=\widehat{AKD}\)
mà hai góc này là hai góc ở vị trí đồng vị
nên Ax//DK
c: Xét ΔABC có
BK,CD là các đường cao
BK cắt CD tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC tại M
Xét tứ giác HKCM có \(\widehat{HKC}+\widehat{HMC}=90^0+90^0=180^0\)
nên HKCM là tứ giác nội tiếp
=>\(\widehat{HKM}=\widehat{HCM}\)
mà \(\widehat{HCM}=\widehat{BAM}\left(=90^0-\widehat{ABM}\right)\)
nên \(\widehat{HKM}=\widehat{BAM}\)
mà \(\widehat{BAM}=\widehat{DKB}\)(ADHK là tứ giác nội tiếp)
nên \(\widehat{DKH}=\widehat{MKH}\)
=>\(\widehat{DKB}=\widehat{MKB}\)
=>KB là phân giác của góc DKM
a: Xét tứ giác ADHK có
ˆADH+ˆAKH=900+900=1800���^+���^=900+900=1800
=>ADHK là tứ giác nội tiếp
Xét tứ giác BDKC có ˆBDC=ˆBKC=900���^=���^=900
nên BDKC là tứ giác nội tiếp
b: Xét (O) có
ˆxAC���^ là góc tạo bởi tiếp tuyến Ax và dây cung AC
ˆABC���^ là góc nội tiếp chắn cung AC
Do đó: ˆxAC=ˆABC���^=���^
mà ˆABC=ˆAKD(=1800−ˆDKC)���^=���^(=1800−���^)
nên ˆxAC=ˆAKD���^=���^
mà hai góc này là hai góc ở vị trí đồng vị
nên Ax//DK
c: Xét ΔABC có
BK,CD là các đường cao
BK cắt CD tại H
Do đó: H là trực tâm của ΔABC
=>AH⊥⊥BC tại M
Xét tứ giác HKCM có ˆHKC+ˆHMC=900+900=1800���^+���^=900+900=1800
nên HKCM là tứ giác nội tiếp
=>ˆHKM=ˆHCM���^=���^
mà ˆHCM=ˆBAM(=900−ˆABM)���^=���^(=900−���^)
nên ˆHKM=ˆBAM���^=���^
mà ˆBAM=ˆDKB���^=���^(ADHK là tứ giác nội tiếp)
nên ˆDKH=ˆMKH���^=���^
=>ˆDKB=ˆMKB���^=���^
=>KB là phân giác của góc DKM
a: Xét tứ giác BEDC có
góc BEC=góc BDC=90 độ
=>BEDC là tứ giác nội tiếp
=>góc AED=góc ACB
mà góc A chung
nên ΔAED đồng dạng với ΔABC
b: góc xAC=góc ABC
góc ABC=góc ADE
=>góc xAC=góc ADE
=>Ax//DE