K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2019

a,  O B M ^ = O E M ^ = 90 0

=> Tứ giác OEBM nội tiếp

b, Chứng minh được: ∆ABM:∆BDM (g.g) =>  M B 2 = M A . M B

c, DOBC cân tại O có OM vừa là trung trực vừa là phân giác

=>  M O C ^ = 1 2 B O C ^ = 1 2 s đ B C ⏜

Mà  B F C ^ = 1 2 B C ⏜ =>  M O C ^ = B F C ^

d,  O E M ^ = O C M ^ = 90 0 => Tứ giác EOCM nội tiếp

=>  M E C ^ = M O C ^ = B F C ^  mà 2 góc ở vị trí đồng vị => FB//AM

10 tháng 3 2022

Tắt quá

 

11 tháng 3 2022

Do BM là tiếp tuyến của đường tròn nên \widehat{OBM}=90^o

Xét đường tròn (O) có AD là một dây cung. Lại có E là trung điểm AD nên theo tính chất của đường kính và dây cung, ta có OE\perp AD hay \widehat{OEM}=90^o.

Xét tứ giác OEBM có \widehat{OBM}=\widehat{OEM}=90^o, chúng lại là hai góc kề nhau nên OEBM là tứ giác nội tiếp.

                   
11 tháng 3 2022

Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O (AB < AC). Hai tiếp tuyến tại B và C cắt nhau tại MAM cắt đường tròn (O) tại điểm thứ hai D. Gọi E là trung điểm đoạn AD. Chứng minh OEBM là tứ giác nội tiếp.

theo bai ta co  là trung điểm đoạn AD

a: Xét tứ giác OBDC có \(\widehat{OBD}+\widehat{OCD}=90^0+90^0=180^0\)

nên OBDC là tứ giác nội tiếp

=>\(\widehat{DOC}=\widehat{DBC}\left(1\right)\)

Xét (O) có

\(\widehat{DBC}\) là góc tạo bởi tiếp tuyến BD và dây cung BC

\(\widehat{BAC}\) là góc nội tiếp chắn cung BC

Do đó: \(\widehat{DBC}=\widehat{BAC}\left(2\right)\)

Từ (1),(2) suy ra \(\widehat{DOC}=\widehat{BAC}\)

b: Ta có: DI//AB

=>\(\widehat{CID}=\widehat{CAB}\)(hai góc đồng vị)

mà \(\widehat{CAB}=\widehat{DBC}\)

và \(\widehat{DBC}=\widehat{DOC}\)

nên \(\widehat{CID}=\widehat{COD}\)

=>CIOD là tứ giác nội tiếp

c: ta có: CIOD là tứ giác nội tiếp

=>\(\widehat{OID}=\widehat{OCD}=90^0\)

=>OI\(\perp\)EF tại I

Ta có: ΔOEF cân tại O

mà OI là đường cao

nên I là trung điểm của EF

=>IE=IF

12 tháng 3 2017

a,Xét đường tròn (O) có:

MB là tiếp tuyến của đường tròn (gt) => \(\widehat{OBM}=90^0\)

Mặt khác E là trung điểm của AD (gt) => \(OE\perp AD\) => \(\widehat{OEM}=90^0\) => \(\widehat{OBM}=\widehat{OEM}\)

Xét tứ giác OEBM có: \(\widehat{OBM}=\widehat{OEM}\) (cmt)

=> OEBM là tứ giác nội tiếp

b, Xét đường tròn (O), tiếp tuyến MB, dây cung BD có:

\(\widehat{MBD}\) là góc tạo bởi tiếp tuyến và dây cung và \(\widehat{MAB}\) là góc nội tiếp cùng chắn cung BD => \(\widehat{MBD}=\widehat{MAB}\)

Xét \(\Delta MBD\)\(\Delta MAB\) có:

\(\widehat{MBD}=\widehat{MAB}\) (cmt)

\(\widehat{M}\) là góc chung

=> \(\Delta MBD\) ~ \(\Delta MAB\left(g.g\right)\)

=> \(\dfrac{MB}{MA}=\dfrac{MD}{MB}\) => \(MB^2=MA.MD\)

c, Gọi giao điểm của OM với (O) là I

Xét đường tròn (O), tiếp tuyến MA, MB có: MA cắt MB tại M

=> \(\widehat{IOB}=\widehat{IOC}=\dfrac{1}{2}\widehat{BOC}\) (t/c của 2 tiếp tuyến cắt nhau)

=> cung IB = cung IC

Mặt khác \(\widehat{BOC}\) là góc ở tâm và \(\widehat{BAC}\) là góc nội tiếp cùng chắn cung BC => \(\widehat{BAC}=\dfrac{1}{2}\widehat{BOC}\)

=> \(\widehat{BAC}=\widehat{IOC}\). Hay \(\widehat{BAC}=\widehat{MOC}\)

Ta có: \(\widehat{BAC}\)\(\widehat{BFC}\) là các góc nội tiếp cùng chắn cung BC

=> \(\widehat{BAC}=\widehat{BFC}\)

=> \(\widehat{BFC}=\widehat{MOC}\)

d, Gọi giao điểm của OE và DF là K

Ta có: \(\widehat{OEM}=90^0\left(cmt\right)\) => \(KE\perp AD\)

Xét \(\Delta AKD\) có:

E là trung điểm của KD (gt)

\(KE\perp AD\left(gt\right)\)

=> \(\Delta AKD\) cân tại K => \(\widehat{KAD}=\widehat{KDA}\). Hay \(\widehat{BAD}=\widehat{FDA}\)

Xét đường tròn (O) có: \(\widehat{BAD}\)\(\widehat{BFD}\) là các góc nội tiếp cùng chắn cung BD => \(\widehat{BAD}=\widehat{BFD}\)

=> \(\widehat{BFD}=\widehat{FDA}\)

Mà 2 góc này ở vị trí so le trong => BF // AD. Hay BF // AM

13 tháng 3 2017

cảm ơn nhiều ạ

a: góc BFC=góc BEC=1/2*180=90 độ

Xét ΔABC có

BE,CF là đường cao

BE cắt CF tại H

=>H là trực tâm

=>AH vuông góc BC

góc AFH+góc AEH=180 độ

=>AEHF là tứ giác nội tiếp

b: Xét ΔAFH vuông tại F và ΔADB vuông tại D có

góc FAH chung

=>ΔAFH đồng dạng với ΔADB

=>AF/AD=AH/AB

=>AF*AB=AD*AH

B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.a) Chứng minh tứ giác AEHF là hình chữ nhậtb) Chứng minh tứ giác BEFC nội tiếpc) Gọi I là trung điểm của BC.Chứng minh AI vuông góc với EFd) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEFC.Tính diện tích hình tròn tâm K.B2: Cho ABC nhọn, đường tròn (O)...
Đọc tiếp

B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.

a) Chứng minh tứ giác AEHF là hình chữ nhật

b) Chứng minh tứ giác BEFC nội tiếp

c) Gọi I là trung điểm của B
C.Chứng minh AI vuông góc với EF

d) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEF
C.Tính diện tích hình tròn tâm K.

B2: Cho ABC nhọn, đường tròn (O) đường kính BC cắt AB, AC lần lượt tại E và D, CE cắt BD tại H

a) Chứng minh tứ giác ADHE nội tiếp

b) AH cắt BC tại F. chứng minh FA là tia phân giác của góc DFE

c) EF cắt đường tròn tại K ( K khác E). chứng minh DK// AF

d) Cho biết góc BCD = 450 , BC = 4 cm. Tính diện tích tam giác ABC

B 3: cho đường tròn ( O) và điểm A ở ngoài (O)sao cho OA = 3R. vẽ các tiếp tuyến AB, AC với đường tròn (O) ( B và C là hai tiếp tuyến )

a) Chứng minh tứ giác OBAC nội tiếp

b) Qua B kẻ đường thẳng song song với AC cắt ( O) tại D ( khác B). đường thẳng AD cắt ( O) tại E. chứng minh AB2= AE. AD

c) Chứng minh tia đối của tia EC là tia phân giác của góc BEA

d) Tính diện tích tam giác BDC theo R

B4: Cho tam giác ABC nhọn, AB >AC, nội tiếp (O,R), hai đường cao AH, CF cắt nhau tại H

a) Chứng minh tứ giác BDHF nội tiếp? Xác định tâm của đường tròn ngoại tiếp tứ giác đó

b) Tia BH cắt AC tại E. chứng minh HE.HB= HF.HC

c) Vẽ đường kính AK của (O). chứng minh AK vuông góc với EF

d) Trường hợp góc KBC= 450, BC = R. tính diện tích tam giác AHK theo R

B5: Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Ba đương cao AE, BF, CK cắt nhau tại H. Tia AE, BF cắt đường tròn tâm O lần lượt tại I và J.

a) Chứng minh tứ giác AKHF nội tiếp đường tròn.

b) Chứng minh hai cung CI và CJ bằng nhau.

c) Chứng minh hai tam giác AFK và ABC đồng dạng với nhau

B6: Cho tam giác ABC nhọn nội tiếp đường tròn  ( O; R ),các đường cao BE, CF  .

a)Chứng minh tứ giác BFEC nội tiếp.

b)Chứng minh OA  vuông góc với EF.

3
27 tháng 5 2018

B1, a, Xét tứ giác AEHF có: góc AFH = 90o  ( góc nội tiếp chắn nửa đường tròn)

                                             góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )

                                             Góc CAB = 90o ( tam giác ABC vuông tại A)

=> tứ giác AEHF là hcn(đpcm)

b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF  = góc AHF ( hia góc nội tiếp cùng chắn cung AF)

mà góc AHF = góc ACB ( cùng phụ với góc FHC)

=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)

c,gọi M là giao điểm của AI và EF

ta có:góc AEF = góc ACB (c.m.t) (1)

do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA

hay tam giác IAB cân tại I => góc MAE = góc ABC (2)

mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong  một tam giác)

=>  ACB + góc ABC = 90o (3)

từ (1) (2) và (3) => góc AEF + góc MAE = 90o

=> góc AME = 90o (theo tổng 3 góc trong một tam giác)

hay AI uông góc với EF (đpcm)

1 tháng 4 2019

em moi lop 6 huhuhuhuhuhu