Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE
Suy ra: BD=CE
b: Xét ΔAED có AE=AD
nên ΔAED cân tại A
c: Xét ΔEBI vuông tại E và ΔDCI vuông tại D có
EB=DC
\(\widehat{EBI}=\widehat{DCI}\)
Do đó; ΔEBI=ΔDCI
Suy ra: IB=IC
Xét ΔAIB và ΔAIC có
AI chung
IB=IC
AB=AC
Do đó: ΔAIB=ΔAIC
Suy ra: \(\widehat{BAI}=\widehat{CAI}\)
hay AI là tia phân giác của góc BAC
a: BD=4cm
b: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE
Suy ra:BD=CE
c: Xét ΔABC có
BD là đường cao
CE là đường cao
BD cắt CE tại I
Do đó: I là trực tâm của ΔABC
Suy ra: AI\(\perp\)BC
=>AH vuông góc với BC tại H
mà ΔACB cân tại A
nên AH vuông góc với BC tại trung điểm của BC
a: Xét ΔABD vuông tại D vaf ΔACE vuông tại E có
AB=AC
góc BAD chung
=>ΔABD=ΔACE
=>AD=AE
b: Xét ΔABC có AD/AC=AE/AB
nên DE//BC
c: Xét ΔIBC có góc ICB=góc IBC
nên ΔIBC cân tại I
d: AB=AC
IB=IC
=>AI là trung trực của BC
=>AI vuông góc BC
a) Xét tam giác ABC ta có AB = AC
=> Tam giác ABC cân tại A
=> \(\widehat{ABC}\)= \(\widehat{ACB}\)
=> \(\frac{1}{2}\widehat{ABC}=\frac{1}{2}\widehat{ACB}\)
=> \(\widehat{ABD}=\widehat{DBC}=\widehat{ACE}=\widehat{ECB}\)
Xét tam giác ACE và tam giác ABD, ta có:
\(\widehat{A}\) chung
AC = AB (gt)
\(\widehat{ACE}=\widehat{ABD}\)
=> Tam giác ACE = tam giác ABD (g.c.g)
=> BD = CE
b) Ta có: \(\hept{\begin{cases}DH⊥BC\\EK⊥BC\end{cases}}\)
=> DH // EK
Xét tam giác DHB vuông tại H và
tam giác EKC vuông tại K, ta có:
BD = CE (cmt)
\(\widehat{DBH}\)(hay \(\widehat{DBC}\)) = \(\widehat{ECK}\)(hay \(\widehat{ECB}\)) (cmt)
=> Tam giác DHB = tam giác EKC (ch.gn)
=> DH = EK
Còn câu c mình không biết
a)Tam giác ABC có AB=AC suy ra tam giác ABC cân tại A suy ra góc B = C
Mà BD là tia phân giác của góc B ; CE là tia phân giác của góc C
suy ra góc ABD = CBD =BCE =ACE
Xét tam giác ABD và ACE có :
góc ABD =góc ACE (cmt )
AB = AC (gt)
Chung gócA
suy ra tam giác ABD = ACE (g.c.g )
suy ra BD = CE ( 2 cạnh tương ứng )
b) Ta có DH vuông góc với BC ; EK vuông góc với BC
suy ra DH song song với EK
Xét tam giác CEK và BDH có :
BD= CE ( cm ở ý a)
góc CKE = góc BHD ( = 90 độ )
góc CBD = BCE ( cm ở ý a )
suy ra tam giác CEK= BDH (ch-gn)
suy ra DH = EK ( 2 cạnh tương ứng )
c) Xét tam giác BIC có góc CBD =BCE ( cm ở ý a ) suy ra tam giác BIC cân tại I
suy ra BI = CI ( t/c tam giác cân )
Xét tam giác AIC và AIB có :
AB =AC ( gt )
góc ACE = ABD ( cm ở ý a )
CI = BI ( cmt)
suy ra tam giác AIC = AIB ( c.g.c)
suy ra góc IAC = IAB (2 góc tương ứng )
suy ra AI là tia phân giác của góc BAC (1)
Mà tam giác ABC cân tại A ( 2)
Từ ( 1 ) và ( 2 ) suy ra AI vuông góc với BC
( nếu đúng nhớ kết bạn với tớ nhé ^-^)