Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình nghĩ đề là ABC vuông tại A nhé, vì mình thử đủ mọi cách r ;)))
Xét tam giác ABC vuông tại A, đường cao AH
cosB = \(\frac{AB}{BC}=\frac{3}{5}\Rightarrow AB=\frac{3}{5}.30=18\)cm
cosB = \(\frac{BH}{AB}=\frac{3}{5}\Rightarrow BH=\frac{3}{5}.18=\frac{54}{5}\)cm
Ta có : cosB = \(\frac{BH}{AB}=\frac{3}{5}\Rightarrow\frac{BH}{3}=\frac{AB}{5}\Rightarrow\frac{BH^2}{9}=\frac{AB^2}{25}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{AB^2}{25}=\frac{BH^2}{9}=\frac{AB^2-BH^2}{16}=\frac{AH^2}{16}\)
\(\Rightarrow\frac{AB^2}{25}=\frac{AH^2}{16}\Rightarrow AH^2=\frac{18^2.16}{25}=\frac{5184}{25}\Rightarrow AH=\frac{72}{5}\)cm
Kẻ đường cao AK.
- ΔABC cân tại A có đường cao AH đồng thời là đường trung tuyến nên BK = CK = BC/2
- Xét ΔAKC và ΔBHC có :
Góc AKC = góc BHC = 90⁰ (AK, BH là đường cao trong ΔABC)
Góc C chung
Vậy ΔAKC đồng dạng với ΔBHC (g.g.)
⇨ AC/BC = KC/HC
⇔ AB/BC = BC/2HC (AB = AC do ΔABC cân tại A, KC = BC/2 cmt)
⇔ 2AB.HC = BC² (tỉ lệ thức : ngoại tỉ bằng trung tỉ)
⇔ 1/HC = 2AB/BC²
⇔ AB/HC = 2AB²/BC² (nhân AB vào 2 vế)
⇔ AC/HC = 2(AB/BC)² (AB = AC)
⇔ (AH + HC)/HC = 2(AB/BC)²
⇔ AH/HC + 1 = 2(AB/BC)²
⇔ AH/HC = 2(AB/BC)² - 1 (điều cần chứng minh)
\(\frac{BH}{AH}+\frac{CH}{AH}=2\Rightarrow\frac{BC}{AH}=2\Rightarrow\frac{AH}{BC}=\frac{1}{2}\)
Vì B<90 ; C <90
=> cosB<1 ; cosC<1 => cosB+cosC =2 là không thể ( vô lí)
=>không có tỉ số AH/BC