Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Tam giác \(BKC\)vuông tại \(K\)có \(M\)là trung điểm của cạnh huyền \(BC\)nên \(KM=\frac{1}{2}BC\).
Tương tự ta cũng có \(HM=\frac{1}{2}BC\)
Suy ra \(KM=HM\)
\(\Rightarrow\Delta MKH\)cân tại \(M\).
Kẻ \(MN\)vuông góc với \(DE\).
Suy ra \(MN//BD//CE\)mà \(M\)là trung điểm của \(BC\)nên \(MN\)là đường trung bình của hình thang \(BDEC\).
suy ra \(N\)là trung điểm của \(DE\Rightarrow DN=NE\)(1).
Mà tam giác \(MKH\)cân tại \(M\)nên \(MN\)là đường cao đồng thời cũng là đường trung tuyến suy ra \(KN=HN\)(2)
(1) (2) suy ra \(DN-KN=EN-HN\Leftrightarrow DK=HE\).
Ta có đpcm.
![](https://rs.olm.vn/images/avt/0.png?1311)
gọi O là tr.điểm BC,I là tr.điểm DE
tam giác BEC có O là tr.điểm DE nên OE là trung tuyến ứng với cạnh huyền BC
=>OE=OB=OC(=1/2BC)
CMTT có OD=OB=OC(=1/2BC)
=>OE=OD=>tam giác ODE cân tại O
tam giác ODE cân ở O có OI là trung tuyến (I là tr.điểm DE) nên OI cũng là đg cao
=>OI _|_ ED hay OI _|_ HK
Mà BH _|_ HK , CK _|_ HK
=>OI//BH//CK => BCKH là hình thang
Dễ CM I là tr.điểm HK => IH=IK
Có IE+EH=IH , ID+DK=IK ,mà IH=IK,IE=ID
=>EH=DK
![](https://rs.olm.vn/images/avt/0.png?1311)
Tam giác ABC cân tại A => góc ABC = ACB => tam giác BEC = CDB (cạnh huyền - góc nhọn )
=> BE = CD; Mà AB = AC => \(\frac{BE}{AB}=\frac{CD}{AC}\). Theo ĐL Ta - let => DE // BC
=> HK // BC Mà CK // BH (vì cùng vuông góc với DE )
=> Tứ giác BCKH là hbh có: góc BHK vuông => BCKH là hcn
Gọi M là trung điểm của BC, dễ dàng chứng minh được tam giác MDE cân ở đỉnh M.
Gọi I là trung điểm của DE thìgiacsvuoong góc DE, suy ra MI // BH //CE. MI là đường trung bình của hình thang BHKC, ta có IH = IK.
Từ đó suy ra IH- IE = IK - ID.
do đó HE = KD.