K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2017

làm hộ vs

Bài 1:Cho tam giác ABC vuông tại A,có AC=3AB.Trên AC lấy D và E cho AD=DE=EC.Tính tổng các góc BCA,góc BAD,góc BEABài 2:Cho tam giác ABC,có góc ABC=70 độ ,góc ACB=30 độ.Trên AB lấy M sao cho goc MCB =40 độ.Trên cạnh AC lấy N sao cho góc NBC=50 độ.Tính góc MNCBài 3:Lấy 3 cạnh BC,CA,BA của tam giác ABC làm canh AC làm cạnh .Dựng 3 tam giác đều BCA1,CAB1,BC1 ra phía ngoài .CMR: các đoan thẳng AA1,BB1,CC1 bằng nhau và đồng...
Đọc tiếp

Bài 1:Cho tam giác ABC vuông tại A,có AC=3AB.Trên AC lấy D và E cho AD=DE=EC.Tính tổng các góc BCA,góc BAD,góc BEA
Bài 2:Cho tam giác ABC,có góc ABC=70 độ ,góc ACB=30 độ.Trên AB lấy M sao cho goc MCB =40 độ.Trên cạnh AC lấy N sao cho góc NBC=50 độ.Tính góc MNC
Bài 3:Lấy 3 cạnh BC,CA,BA của tam giác ABC làm canh AC làm cạnh .Dựng 3 tam giác đều BCA1,CAB1,BC1 ra phía ngoài .CMR: các đoan thẳng AA1,BB1,CC1 bằng nhau và đồng quy
Bài 4:Cho tam giác ABC,đường cao AH.Trên nửa mp bờ AB không chứa C lấy D sao cho BD=BA,BD vuông góc BA.Trên nửa mp bờ AC không chứa B lấy E sao cho CE=CA,CE vuông góc CA.CMR:các đường thẳng AH,BE,CD đồng quy
Bài 5:Cho tam giác ABC vuông tại A.cạnh huyền BC=2AB,D trên AC ,E trên AB sao cho góc ABD = 1/3 góc ABC, góc ACE=1/3 góc ACD.Gọi F là giao điểm của BD và CE .Gọi I và K là hình chiếu của F trên BC và AC.Lấy H và G sao cho AC là trung trực của FH,BC là trung trực FG.CM:a,H,B,G thẳng hàng
b,tam giác DEF cân
Bài 6:Cho tam giác ABC nhọn, xác định D trên BC,E trên AC,F trên AB sao cho chu vi tam giác DEF nhỏ nhất

2
2 tháng 9 2017

Kẻ DM ∟ AC sao cho DM = AB. 
Dễ dàng chứng minh Δ DMC = Δ AEB (c - g - c) 
=> ^DCM = ^AEB và BE = MC (1) 
Δ BMD = Δ BED (c - g - c) 
=> ^BMD = ^BED và BM = BE (2) 
(1) và (2) cho: 
^DCM = ^BMD và CM = MB 
=> Δ BMC cân tại M 
mà ^DMC + ^DCM = 90o (Δ MDC vuông) 
=> ^DMC + ^BMD = 90o 
=> Δ BMC vuông cân. 
=> BCM = 45o 
Mà ^ACB + ^DCM = ^BCM 
=> ^ACB + ^AEB = 45o (vì ^AEB = ^DCM (cmt)) 
Cách 2: 
Đặt AB = a 
ta có: BD = a√2 
Do DE/DB = DB/DC = 1/√2 
=> Δ DBC đồng dạng Δ DEB (c - g - c) 
=> ^DBC = ^DEB 
Δ BDC có ^ADB góc ngoài 
=> ^ADB = ^DCB + ^DBC 
hay ^ACB + ^AEB = 45o 
Cách 3 
ta có: 
tanAEB = AB/AE = 1/2 
tanACB = AB/AC = 1/3 
tan (AEB + ACB) = (tanAEB + tanACB)/(1 - tanAEB.tanACB) 
= (1/2 + 1/3)/(1 - 1/2.1/3) = 1 = tan45o 
Vậy ^ACB + ^AEB = 45o

2 tháng 9 2017

Kẻ DM ∟ AC sao cho DM = AB. 

Dễ dàng chứng minh Δ DMC = Δ AEB (c - g - c) 

=> ^DCM = ^AEB và BE = MC (1) 

Δ BMD = Δ BED (c - g - c) 

=> ^BMD = ^BED và BM = BE (2) 

(1) và (2) cho: 

^DCM = ^BMD và CM = MB 

=> Δ BMC cân tại M 

mà ^DMC + ^DCM = 90o (Δ MDC vuông) 

=> ^DMC + ^BMD = 90o 

=> Δ BMC vuông cân. 

=> BCM = 45o 

Mà ^ACB + ^DCM = ^BCM 

=> ^ACB + ^AEB = 45o (vì ^AEB = ^DCM (cmt)) 

Bài 6 (các câu khác nhau thì không liên quan đến nhau)a) Cho tam giác ABC, kẻ BH  AC ( H  AC); CK  AB ( K  AB). Biết BH = CK.Chứng minh tam giác ABC cân.Tết đến tưng bừng, vui mừng làm ToánGiáo viên: Nguyễn Cao Uyển Mib) Cho Tam giác ABC, gọi M, N lần lượt là trung điểm các cạnh AB, AC. Biết CM =BN. Chứng tỏ tam giác ABC cân.c) Cho tam giác ABC cân tại A, Tia phân giác của góc B và góc C cắt AC và AB...
Đọc tiếp

Bài 6 (các câu khác nhau thì không liên quan đến nhau)
a) Cho tam giác ABC, kẻ BH  AC ( H  AC); CK  AB ( K  AB). Biết BH = CK.
Chứng minh tam giác ABC cân.
Tết đến tưng bừng, vui mừng làm Toán
Giáo viên: Nguyễn Cao Uyển Mi
b) Cho Tam giác ABC, gọi M, N lần lượt là trung điểm các cạnh AB, AC. Biết CM =
BN. Chứng tỏ tam giác ABC cân.
c) Cho tam giác ABC cân tại A, Tia phân giác của góc B và góc C cắt AC và AB lần
lượt tại D và E. Chứng minh BD = CE.
Bài 7: Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia
CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD tại H, CK vuông góc với AE
tại K. Hai đường thẳng HB và KC cắt nhau tại I. Chứng minh rằng:
a) Tam giác ADE cân.
b) Tam giác BIC cân.
c) IA là tia phân giác của góc BIC.
Bài 8: Cho tam giác ABC vuông tại A, có AB = 5cm, BC = 13cm. Kẻ AH vuông góc với
BC tại H. Tính độ dài các đoạn thẳng: AC, AH, BH, CH.
Bài 9: (các câu khác nhau thì không liên quan đến nhau)
a) Cho tam giác ABC vuông tại A, đường cao AH = 2cm. Tính các cạnh của tam giác
ABC biết: BH = 1cm, HC = 3cm.
b) Cho tam giác ABC đều có AB = 5cm. Tính độ dài đường cao BH?
Bài 10: Cho tam giác ABC có góc A nhỏ hơn 900. Vẽ ra phía ngoài tam giác ABC các
tam giác vuông cân đỉnh A là MAB, NAC.
a) Chứng minh: MC = NB.
b) Chứng minh: MC NB 
c) Giả sử tam giác ABC đều cạnh 4 cm. Tính MB, NC và chứng minh MN // BC.

Giúp mình với ạ, mik đang cần gấp

1
6 tháng 2 2022

Ai giúp mik với mik đang cần gấp ạ

15 tháng 12 2018

Gọi giao điểm của CM và AB là C1. Ta cần chứng minh CC1 ⊥ AB và C1 là trung điểm của đoạn thẳng AB. Vì trong một tam giác ba đường cao đồng quy nên CM hay CC1 vuông góc với AB.

+) Do tam giác ABC cân tại C có CM là đường cao nên CM đồng thời là đường trung trực của đoạn thẳng AB ( tính chất tam giác cân).

5 tháng 1 2018

Ta có: ∠A + ∠B +∠C = 180º ( tổng ba góc trong một tam giác).

Suy ra: ∠C = 180º – (∠A + ∠B)

Do ba đường phân giác của một tam giác đồng quy tại một điểm nên CM là tia phân giác của góc C.

Ta có ½. (∠A + ∠B ) = ∠(MAB) + ∠(MBA) = 180 − ∠(AMB) = 180o − 111o = 69o.

Suy ra ∠A + ∠B = 138o

Suy ra ∠C = 180o – (∠A + ∠B) = 180o − 138o = 42o.

Vì CM là tia phân giác của góc ACB nên: ∠(ACM) = ∠(BCM) = 420 : 2 = 21o.

11 tháng 3 2017

Ta có: ∠A + ∠B +∠C = 180º ( tổng ba góc trong một tam giác).

Suy ra: ∠C = 180º – (∠A + ∠B)

Do ba đường phân giác của một tam giác đồng quy tại một điểm nên CM là tia phân giác của góc C.

1/2(∠A + ∠B ) = ∠(MAB) + ∠(MBA) = 180 − ∠(AMB) = 180o − 136o = 44o

Suy ra ∠A + ∠B = 2.44o = 88o

∠C = 180o − 88o = 92o

Vậy ∠(ACM) = ∠(BCM) = 92o : 2o = 46o