K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2021

a: Xét ΔABC có

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔBAC

Suy ra: MN//BC

Xét ΔABH có

M là trung điểm của AB

MI//BH

Do đó: I là trung điểm của AH

7 tháng 11 2021

mình làm dc câu a thôi bn:(

23 tháng 11 2021

Giúp tui từ câu b thôi a tui bt lm rk, tui đang cần gấp

 

28 tháng 10 2020

a) Xét ΔABC có

M là trung điểm của AB(gt)

N là trung điểm của AC(gt)

Do đó: MN là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

⇒MN//BC và \(MN=\frac{BC}{2}\)(Định lí 2 về đường trung bình của tam giác)

Ta có: MN//BC(cmt)

AH⊥BC(gt)

Do đó: MN⊥AH(Định lí 2 từ vuông góc tới song song)

Ta có: MN//BC(cmt)

nên MI//BH

Xét ΔABH có

M là trung điểm của AB(gt)

MI//BH(cmt)

Do đó: I là trung điểm của AH(Định lí 1 về đường trung bình của tam giác)

Ta có: AH⊥MN(cmt)

mà AH\(\cap\)MN={I}

nên AH⊥MN tại I

mà I là trung điểm của AH(cmt)

nên MN là đường trung trực của AH(đpcm)

b) Xét ΔACB có

P là trung điểm của BC(gt)

N là trung điểm của AC(gt)

Do đó: PN là đường trung bình của ΔACB(Định nghĩa đường trung bình của tam giác)

⇒PN//AB và \(PN=\frac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)

Ta có: NQ=NP(gt)

mà P,N,Q thẳng hàng

nên N là trung điểm của PQ

\(PN=\frac{PQ}{2}\)(2)

Từ (1) và (2) suy ra AB=PQ

Xét tứ giác ABPQ có AB//PQ(AB//PN, Q∈PN) và AB=PQ(cmt)

nên ABPQ là hình bình hành(Dấu hiệu nhận biết hình bình hành)

c) Xét ΔABC có

M là trung điểm của AB(gt)

P là trung điểm của BC(gt)

Do đó: MP là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

⇒MP//AC và \(MP=\frac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)(3)

Ta có: ΔAHC vuông tại H(AH⊥BC)

mà HN là đường trung tuyến ứng với cạnh huyền AC(N là trung điểm của AC)

nên \(HN=\frac{AC}{2}\)(Định lí 1 áp dụng hình chữ nhật vào tam giác vuông)(4)

Từ (3) và (4) suy ra MP=HN

Xét tứ giác PNMH có HP//MN(MN//BC, H∈BC, P∈BC)

nên PNMH là hình thang có hai đáy là HP và MN(Định nghĩa hình thang)

Hình thang PNMH(HP//MN) có PM=HN(cmt)

nên PNMH là hình thang cân(Dấu hiệu nhận biết hình thang cân)

d) Xét ΔBPQ có

N là trung điểm của PQ(cmt)

NK//BP(NM//BC, P∈BC, K∈MN)

Do đó: K là trung điểm của BQ(Định lí 1 về đường trung bình của tam giác)

hay B,K,Q thẳng hàng(đpcm)

21 tháng 12 2023

a: Xét ΔABC có

M,N lần lượt là trung điểm của AB,AC

=>MN là đường trung bình của ΔABC

=>MN//BC và \(MN=\dfrac{BC}{2}\)

=>MI//BH

Xét ΔABH có

M là trung điểm của AB

MI//BH

Do đó: I là trung điểm của AH

b: Xét ΔABC có

P,N lần lượt là trung điểm của CB,CA

=>PN là đường trung bình của ΔABC

=>PN//AB và PN=AB/2

Ta có: PN//AB

Q\(\in\)PN

Do đó: PQ//AB

Ta có: \(PN=\dfrac{AB}{2}\)

\(PN=\dfrac{PQ}{2}\)

Do đó: AB=PQ

Xét tứ giác ABPQ có

PQ//AB

PQ=AB

Do đó: ABPQ là hình bình hành

c: Ta có: NP//AB

M\(\in\)AB

Do đó:  NP//AM

Ta có: \(NP=\dfrac{AB}{2}\)

\(AM=\dfrac{AB}{2}\)

Do đó: NP=AM

Xét tứ giác AMPN có

AM//PN

AM=PN

Do đó: AMPN là hình bình hành

=>AP cắt MN tại trung điểm của mỗi đường

mà O là trung điểm của MN

nên O là trung điểm của AP

=>A,O,P thẳng hàng

28 tháng 10 2020

Co tam giác ABc có ba  góc nhọn ( AB<AC) , đường cao AH

a: Xét ΔABC có

M là trung điểm của BA
N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC và MN=BC/2

=>MN=BE và MN//BE

=>BMNE là hình bình hành

b: Ta có: ΔAHB vuông tại H

mà HM là đường trung tuyến

nên HM=AM

=>M nằm trên đường trung trực của AH(1)

Ta có: ΔAHC vuông tại H

mà HN là đường trung tuyến

nên HN=AC/2=AN

=>N nằm trên đường trung trực của AH(2)

Từ (1) và (2) suy ra MN là đường trung trực của AH

Xét ΔABC có 

M là trung điểm của AB

E là trung điểm của BC

Do đó: ME là đường trung bình

=>ME=AC/2

mà HN=AC/2

nên ME=HN

Xét tứ giác MNEH có MN//EH

nên MNEH là hình thang

mà ME=NH

nên MNEH là hình thang cân

23 tháng 10 2021

a: Xét ΔABC có

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔBAC

Suy ra: MN//BC

Xét ΔABH có

M là trung điểm của AB

MI//BH

Do đó: I là trung điểm của AH

a) Sửa đề: MN cắt AH tại I

Xét ΔABC có 

M là trung điểm của AB(gt)

N là trung điểm của AC(gt)

Do đó: MN là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

⇒MN//BC và \(MN=\dfrac{BC}{2}\)(Định lí 2 về đường trung bình của tam giác)

Ta có: MN//BC(cmt)

mà I∈MN(gt)

và H∈BC(gt)

nên IN//HC

Xét ΔAHC có 

N là trung điểm của AC(gt)

IN//HC(cmt)

Do đó: I là trung điểm của AH(Định lí 1 về đường trung bình của tam giác)

b)

Ta có: Q đối xứng với P qua N(gt)

nên N là trung điểm của QP

Xét ΔABC có 

P là trung điểm của BC(gt)

N là trung điểm của AC(gt)

Do đó: PN là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

⇒PN//AB và \(PN=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)

mà Q∈PN và \(PN=\dfrac{PQ}{2}\)(N là trung điểm của PQ)

nên AB//PQ và AB=PQ

Xét tứ giác ABPQ có 

AB//PQ(cmt)

AB=PQ(cmt)

Do đó: ABPQ là hình bình hành(Dấu hiệu nhận biết hình bình hành)

c) Ta có: MN//BC(cmt)

mà H∈BC(gt)

và P∈BC(P là trung điểm của BC)

nên MN//HP

Xét ΔABC có

M là trung điểm của AB(gt)

P là trung điểm của BC(gt)

Do đó: MP là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

⇒MP//AC và \(MP=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)

Ta có: ΔAHC vuông tại H(AH⊥BC)

mà HN là đường trung tuyến ứng với cạnh huyền AC(N là trung điểm của AC)

nên \(HN=\dfrac{AC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(2)

Từ (1) và (2) suy ra MP=HN

Xét tứ giác MNPH có MN//HP(cmt)

nên MNPH là hình thang có hai đáy là MN và HP(Định nghĩa hình thang)

Hình thang MNPH(MN//HP) có MP=HN(cmt)

nên MNPH là hình thang cân(Dấu hiệu nhận biết hình thang cân)