K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 2 2022

Hai góc này không bằng nhau thì chứng minh làm sao được em?

Em thử sử dụng tính năng đo góc của geogebra là biết.

4 tháng 2 2022

ta có: \(MC^2=MI.MA\)

\(\Rightarrow MD^2=MI.MA\) ( do tam giác MCD cân tại M)

\(\Rightarrow\dfrac{MD}{MA}=\dfrac{ MI}{MD}\) 

Xét tam giác MDI và tam giác MAD có :

\(\left\{{}\begin{matrix}DMAgócchung\\\dfrac{MD}{MA}=\dfrac{MI}{MD}\end{matrix}\right.\)

=> tam giác MDI đồng dạng tam giác MAD ( g -c)

=> góc MDI = góc MAD (1)

tứ giác DNIC nội tiếp => góc MDI = góc MCI (2)

từ 1 và 2 suy ra :góc NCI = góc HAD

mà góc MAD = góc KCI 

=>  góc NCI = góc KCI 

vậy 3 điểm C ; K ; N thẳng hàng ( đpcm)

NV
5 tháng 2 2022

ACDF nội tiếp nên \(\widehat{BAC}+\widehat{CDF}=180^0\Rightarrow\widehat{BAC}=\widehat{CDN}\)

ABIC hiển nhiên nội tiếp \(\Rightarrow\widehat{BAC}+\widehat{NIC}=180^0\)

\(\Rightarrow\widehat{CDN}+\widehat{NIC}=180^0\Rightarrow CDNI\) nội tiếp

\(\Rightarrow\widehat{NDI}=\widehat{NCI}\) (cùng chắn IN)

MCD cân \(\Rightarrow MC=MD\Rightarrow MD^2=MC^2=MI.MA\Rightarrow\dfrac{MD}{MA}=\dfrac{MI}{MD}\) và \(\widehat{NMI}\) chung

\(\Rightarrow\Delta MDI\sim\Delta MAD\left(c.g.c\right)\) 

\(\Rightarrow\widehat{NDI}=\widehat{MAD}\Rightarrow\widehat{MAD}=\widehat{NCI}\)

Mà \(\widehat{MAD}=\widehat{KCI}\) (cùng chắn cung IK)

\(\Rightarrow\widehat{KCI}=\widehat{NCI}\) hay K, N, C thẳng hàng

NV
5 tháng 2 2022

Đây chắc là 1 câu trong 1 bài nào đó, ít nhất em cũng phải nêu những câu trước có gì để người khác đỡ phải chứng minh từ đầu chứ?

MC^2=MI*MA=MD^2

=>MD/MA=MI/MD

=>ΔMDI đồng dạng với ΔMAD

DNIC nội tiếp

=>góc NDI=góc NCI

=>góc MCI=góc NAD

=>góc NCI=góc KCI

=>C,K,N thẳng hàng

24 tháng 4 2023

ta có: MC2=MI.MA

⇒MD=MC ⇒MD2=MI.MA ( do tam giác MCD cân tại M)

⇒MD/ MA= MI/MD

Xét tam giác MDI và tam giác MAD có :

​​Góc M chung; MD/ MA= MI/MD

=> tam giác MDI đồng dạng tam giác MAD (c- g -c)

=> góc MDI = góc MAD (1)

tứ giác DNIC nội tiếp => góc MDI = góc MCI (2)

từ (1) và (2) suy ra :góc NCI = góc HAD

mà góc MAD = góc KCI 

=>  góc NCI = góc KCI 

vậy 3 điểm C ; K ; N thẳng hàng ( đpcm)

25 tháng 4

có cả trường hợp NCI =KCI mà 3 điểm không thẳng hàng nữa mà?(N đối xứng với K)

 

a: Xét tứ giác AEHF có

góc AEH+góc AFH=180 độ

=>AEHF là tứ giác nội tiếp

Xét tứ giác BFEC có

góc BFC=góc BEC=90 độ

=>BFEC là tứ giác nội tiếp

b: Xét (O) có

ΔABK nội tiếp

AK là đường kính

=>ΔABK vuông tại B

=>BK//CH

Xét (O) có

ΔACK nội tiếp

AK là đường kính

=>ΔACK vuông tại C

=>CK//BH

Xét tứ giác BHCK có

BH//CK

BK//CH

=>BHCK là hình bình hành

=>BC cắt HK tại trung điểm của mỗi đường

=>I là trung điểm của BC