Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
\(\widehat{BAD}\) chung
Do đó: ΔABD đồng dạng với ΔACE
=>\(\dfrac{AB}{AC}=\dfrac{AD}{AE}\)
=>\(AB\cdot AE=AD\cdot AC\)(3)
b: Sửa đề: Gọi P là trung điểm của MN.Chứng minh AP vuông góc MN
Xét ΔAMC vuông tại M có MD là đường cao
nên \(AD\cdot AC=AM^2\left(1\right)\)
Xét ΔANB vuông tại N có NE là đường cao
nên \(AE\cdot AB=AN^2\left(2\right)\)
Từ (1) và (2) và (3) suy ra AM=AN
ΔAMN cân tại A
mà AP là đường trung tuyến
nên AP\(\perp\)MN
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc BAE chung
DO đó: ΔABE\(\sim\)ΔACF
SUy ra: AB/AC=AE/AF
hay \(AB\cdot AF=AE\cdot AC\)
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc EAF chung
Do đó: ΔAEF\(\sim\)ΔABC
Suy ra: \(\widehat{AEF}=\widehat{ABC}\)
Xét ΔADB vuông tại D và ΔAEC vuông tại E có
\(\widehat{EAC}\) chung
Do đó: ΔADB\(\sim\)ΔAEC
Suy ra: \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)
hay \(AD\cdot AC=AB\cdot AE\left(1\right)\)
Xét ΔANB vuông tại N có NE là đường cao ứng với cạnh huyền AB
nên \(AB\cdot AE=AN^2\left(2\right)\)
Xét ΔAMC vuông tại M có MD là đường cao ứng với cạnh huyền AC
nên \(AD\cdot AC=AM^2\left(3\right)\)
Từ (1), (2) và (3) suy ra AM=AN