K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2023

a: Xét ΔAMB và ΔCMD có

MA=MC

\(\widehat{AMB}=\widehat{CMD}\)(hai góc đối đỉnh)

MB=MD

Do đó: ΔAMB=ΔCMD

b: ta có: ΔAMB=ΔCMD

=>\(\widehat{MAB}=\widehat{MCD}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CD

c: Xét ΔIBM và ΔKDM có

IB=KD

\(\widehat{IBM}=\widehat{KDM}\)(hai góc so le trong, AB//CD)

BM=MD

Do đó: ΔIBM=ΔKDM

=>\(\widehat{IMB}=\widehat{KMD}\)

mà \(\widehat{IMB}+\widehat{IMD}=180^0\)(hai góc kề bù)

nên \(\widehat{KMD}+\widehat{IMD}=180^0\)

=>I,M,K thẳng hàng

16 tháng 12 2022

UKM THÌ CÓ BÀI TỰA VẬY BẠN SO ĐC CHỨ 

a) Xét AIM và BIC có:IA = IB (do I là trung điểm của AB);AIM BIC(hai góc đối đỉnh);IM = IC (giảthiết).Do đó AIM = BIC (c.g.c)Suy ra AM = BC (hai cạnh tương ứng) và MAI CBI(hai góc tương ứng)  Mà MAI, CBIlà hai góc ởvịtrí so le trong nên AM // BC.b) Xét ANE và CBE có:EA = EC (do E là trung điểm của AC);AEN CEB(hai góc đối đỉnh);EN= EB(giảthiết).Do đó ANE = CBE (c.g.c)Suy ra NAE BCE(hai góc tương ứng)Mà NAE, BCElà hai góc ởvịtrí so le trong nên AN// BC.c) Ta có AM // BC (theo câu a) và AN // BC (theo câu b)Do đó qua điểm A có hai đường thẳng song song với BC nên theo tiên đềEuclid, hai đường thẳng AM và AN trùng nhau hay ba điểm A, M, N thẳng hàng.Lại có ANE = CBE (theo câu b) nên AN = CB (hai cạnh tương ứng)Mặt khác AM = BC (theo câu a)Do đó AM = AN (cùng bằng BC)  Mà ba điểm A, M, N thẳng hàng nên A là trung điểm của MN.
16 tháng 12 2022

a: Xét ΔAMB và ΔCMD có

MA=MC

góc AMB=góc CMD

MB=MD

Do đó: ΔAMB=ΔCMD

b: Xét tứ giác ABCD có

M là trung điểm chung của AC và BD

nên ABCD là hình bình hành

=>AB//CD và AB=CD

c: Xét tứ giác AKBC có

N là trung điểm chung của AB và KC

nên AKBC là hình bình hành

=>AK//BC

mà AD//BC

nên D,A,K thẳng hàng

15 tháng 12 2023

loading...  loading...  loading...  

18 tháng 12 2023

a: Xét ΔAMB và ΔCMD có

MA=MC

\(\widehat{AMB}=\widehat{CMD}\)

MB=MD

Do đó: ΔAMB=ΔCMD

b: Xét ΔMAD và ΔMCB có

MA=MC

\(\widehat{AMD}=\widehat{CMB}\)

MD=MB

Do đó: ΔMAD=ΔMCB

=>\(\widehat{MAD}=\widehat{MCB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AD//BC

c: Xét ΔNAK và ΔNBC có

NA=NB

\(\widehat{ANK}=\widehat{BNC}\)(hai góc đối đỉnh)

NK=NC

Do đó; ΔNAK=ΔNBC

=>\(\widehat{NAK}=\widehat{NBC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AK//BC

Ta có: AD//BC

AK//BC

AK,AD có điểm chung là A

Do đó: D,A,K thẳng hàng

2 tháng 1 2016

a) xét tam giác AMBvà tam giácCMD có 

góc AMB=gócCMD(đối đỉnh)

MA=MC

MD=MB

suy ra tam giác AMB=tam giác CMD

b) tam giác AMB=tam giác CMD(câu a)

AB=CD(hai cạnh tương ứng)

góc DCM=góc MAB(hai góc tương ứng và so le trong)

suy ra AB//CD

câu c đang tìm hiểu từ từ nha tick đi rồi giải câu c luôn cho

 

 

2 tháng 1 2016

A B E D C M

a) Xét \(\Delta\)AMB & \(\Delta\)CMD có:

MB=MD( giả thiết)

góc AMB= góc CMD(2 góc đối đỉnh)

AM=MC( vì M là trung điểm của AC)

=>\(\Delta\)AMB=\(\Delta\)CMD(c.g.c)

b) Theo a) \(\Delta\)AMB=\(\Delta\)CMD

=>AB=CD(2 cạnh tương ứng)

=>góc BAM= góc DCM( 2 góc tương ứng)

Mà 2 góc này ở vị trí so le trong=>AB//CD

c) theo b) AB//CD

=> góc ABC= góc BCE( 2 góc so le trong)

Ta có: AB=CD( theo c/m b)

mà CD=CE( vì C là trung điểm DE)

=>AB=EC

Xét \(\Delta\)ABC & \(\Delta\)ECB có:

AB=EC( theo c/m trên)

góc ABC= góc ECB( theo cm trên)

AC là cạnh chung

=>\(\Delta\)ABC=\(\Delta\)ECB(c.g.c)

=>góc ACB= góc EBC( 2 góc tương ứng)

Mà 2 góc này ở vị trí so le trong

=>AC//BE

 

14 tháng 12 2022

a: Xét ΔAMB và ΔCMD có

MA=MC

góc AMB=góc CMD

MB=MD

Do đó: ΔAMB=ΔCMD
b: ΔAMB=ΔCMD

nên AB=CD và góc MAB=góc MCD

=>AB//CD

c: Xét tứ giác AKBC có

N là trung điểm chung của AB và KC

nên AKBC là hình bình hành

=>AK//BC

Xét tứ giác ABCD có

M là trung điểm chung của AC và BD

nên ABCD là hình bình hành

=>AD//BC

mà AK//BC

nên D,A,K thẳng hàng

4 tháng 3 2017

a/

Xét tam giác AMB và tam giác CMD, có:

MA=MC (gt)

MB=MD (gt)

\(\widehat{AMB}=\widehat{CMD}\)(đđ)

Do đó: tam giác AMB=tam giác CMD (cgc) 

b/

Vì tam giác AMB=tam giac CMD (cmt) nên AB=CD

Và \(\widehat{BAM}=\widehat{MCD}\)

Mà chúng ở vị trí so le trong 

Vậy AB//CD

a, Xét \(\Delta\)AMB và \(\Delta\)CMD 

MB = MD (gt)

^AMB = ^CMD (đối đỉnh)

AM = CM (gt)

=> \(\Delta\)AMB = \(\Delta\)CMD (c.g.c)

b, Vì \(\Delta\)AMB = \(\Delta\)CMD 

=> ^BAM = ^DCM ( 2 góc tương ứng )

Vậy : AB = CD và  AB//CD