K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: ΔABC đều(gt)

mà AD là đường trung tuyến ứng với cạnh BC(gt)

nên AD là đường cao và đường phân giác ứng với cạnh BC(tính chất tam giác cân)

⇒AD⊥BC

hay GD⊥BC

Ta có: ΔABC đều(gt)

mà BE là đường trung tuyến ứng với cạnh AC(gt)

nên BE là đường cao và đường phân giác ứng với cạnh AC(tính chất tam giác cân)

⇒BE⊥AC

hay GE⊥AC

Ta có: ΔABC đều(gt)

mà CF là đường trung tuyến ứng với cạnh AB(gt)

nên FC là đường cao và đường phân giác ứng với cạnh AB(tính chất tam giác cân)

⇒CF⊥AB

hay GF⊥AB

Xét ΔGFB vuông tại F và ΔGDB vuông tại D có

GB là cạnh chung

\(\widehat{FBG}=\widehat{DBG}\)(BE là tia phân giác của \(\widehat{ABC}\), F∈AB, D∈AC, G∈BE)

Do đó: ΔGFB=ΔGDB(cạnh huyền-góc nhọn)

⇒GF=GD(hai cạnh tương ứng)(1)

Xét ΔGDC vuông tại D và ΔGEC vuông tại E có

GC là cạnh chung

\(\widehat{DCG}=\widehat{ECG}\)(CF là tia phân giác của \(\widehat{ACB}\), E∈AC, D∈BC, G∈CF)

Do đó: ΔGDC=ΔGEC(cạnh huyền-góc nhọn)

⇒GD=GE(hai cạnh tương ứng)(2)

Từ (1) và (2) suy ra GD=GF=GE(đpcm)

16 tháng 3 2023

Dài thế ba :v

16 tháng 3 2017

mink se giai neu ban kick

10 tháng 8 2018

Xét tam giác ABC có G là trọng tâm 

=> AG=\(\frac{2}{3}\) AD, mà AD =12cm

=> GD=\(\frac{1}{3}\) AD

=> GD=\(\frac{1}{3}\) .12= 4cm

9 tháng 8 2016

1)

xét ΔAEK và Δ CEG có:

EA=EC(gt)

EG=EK(gt)

góc AEK= góc GEC( 2 góc đối đỉnh)

=> ΔAEK=ΔCEG(c.g.c)

=> AK=GC

cm tương tự ta có:ΔGDC=ΔIDB(c.g.c)

=> GC=BI

 và AK=GC

=> AK=GC=BI

2)

theo câu a, ta có ΔAEK=ΔCEG(c.g.c)

=> góc EAK= góc ECG

=> AK//GC

theo câu a, ta có: ΔGDC=ΔIDB(c.g.c)

=> góc DGC= góc DIB

=> GC//BI

   và AK//GC

=> AK//BI

3)

ta có: AD là đường trung tuyến ứng với cạnh BC của Δ ABC

BE là đường trung tuyến ứng với cạnh AC của ΔABC

=> giao của AD và BE là trọng tâm của ΔABC

=> G là trọng tâm của ΔABC

=> GA=2GD

mà GI=ID

=> GA=GI+ID=GI

ta có G là trọng tâm của ΔABC; BE là đường trung tuyến của ΔABC

=> BG=2GE

mà GE=EK

=> BG=GE+EK=GK

xét ΔGAK và ΔGIB có :

GA=GI(cmt)

GK=GB(cmt)

góc AGK= góc BGI(2 góc đối đỉnh)

=>ΔGAK=ΔGIB(c.g.c)

4)

ta có  AD là đường trung tuyến của ΔABC

=> AD=3GD

hay DG=DA:3

ta có : BE là đường trung tuyến của ΔABC

=> GE=BE:3

5)

nếu CF là đường trung tuyến của ΔABC cắt AD tại G thì G là trọng tâm của tam giác ΔABC( tương tự như câu 4)

=> CG=2GF

NX: 3 đường trung tuyến của 1 tam giác cắt nhau tại 1 điểm. điểm này gọi là trọng tâm của tam giác đó

điểm này cách trung điểm của cạnh mà đoạn thẳng đi qua nó một khoảng =1/2 k/cách từ điểm đó đến đỉnh của tam giác mà đoạn thẳng đã đi  nó 

1: Xét ΔABC có 

AD là đường trung tuyến

BE là đường trung tuyến

AD cắt BE tại G

Do đó: G là trọng tâm của ΔABC

Suy ra: GA=2GD; GB=2GE

mà GI=2GD

nên GA=GI

Ta có: GB=2GE

mà GK=2GE

nên GB=GK

Xét tứ giác ABIK có 

G là trung điểm của AI

G là trung điểm của BK

Do đó: ABIK là hình bình hành

Suy ra: AK=BI

2: Sửa đề; AK//CG

Xét tứ giác AGCK có

E là trung điểm của AC

E là trung điểm của GK

Do đó: AGCK là hình bình hành

Suy ra: AK//CG

3: Xét ΔGAK và ΔGIB có 

GA=GI

GK=GB

AK=IB

Do đó: ΔGAK=ΔGIB

4: Ta có: G là trọng tâm của ΔABC

mà AD là đường trung tuyến

nên DG=DA/3

Ta có: G là trọng tâm của ΔABC

mà BE là đường trung tuyến

nên EG=BE/3