K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2017

Gọi đường cao của tam giác đó lần lượt là AA' ; BB' ; CC'

Vì 3 đường cao tỉ lệ với 3;4;5 nên \(\frac{AA^,}{3}=\frac{BB^,}{4}=\frac{CC^,}{5}\)

Đặt \(\frac{AA^,}{3}=\frac{BB^,}{4}=\frac{CC^,}{5}=k\) \(\Rightarrow\hept{\begin{cases}AA^,=3k\\BB^,=4k\\CC^,=5k\end{cases}}\)

Ta có : \(2S_{ABC}=AA^,.BC=BB^,.AC=CC^,.AB\)

\(\Leftrightarrow3k.BC=4k.AC=5k.AB\)

\(\Leftrightarrow3BC=4AC=5AB\Rightarrow\frac{BC}{20}=\frac{AC}{15}=\frac{AB}{12}\)

Đặt \(\frac{BC}{20}=\frac{AC}{15}=\frac{AB}{12}=l\Rightarrow\hept{\begin{cases}BC=20l\\AC=15l\\AB=12l\end{cases}}\)

Nó vẫn là tam giác thường thôi mà

23 tháng 12 2017

tam giác vuông bạn nhé

22 tháng 12 2017

Tam giác vuông 

Đặt ẩn rồi áp dụng định lí Py-ta-go là ra thôi

a: XétΔABC vuông tại A và ΔHBA vuông tại H có 

góc B chung

Do đó: ΔABC\(\sim\)ΔHBA

b: \(\dfrac{S_{ABC}}{S_{HBA}}=\dfrac{25}{9}\)

nên \(S_{HBA}=24:\dfrac{25}{9}=24\cdot\dfrac{9}{25}=8.64\left(cm^2\right)\)

9 tháng 4 2022

cảm ơn nha

 

3 tháng 3 2018

Tam giác ABC có chu vi bằng 74cm, AC là cạnh lớn nhất. Đường phân giác của góc A chia cạnh BC thành hai đoạn tỉ lệ với 2:3; đường phân giác của góc C chia cạnh AB thành hai đoạn tỉ lệ với 4:5. Tính độ dài các cạnh của tam giác ABC. 

AB + BC + AC = 74 (*) 
Trong ∆ ABC phân giác AD → AB/AC = DB/DC = 2/3 (AC > AB) 
→ AB = 2/3 . AC (1) , tương tự với phân giác CE ta suy ra 
BC = 4/5 . AC (2) . Thế tất cả vào (*) ta được: 
2/3 . AC + 4/5 . AC + AC = 74 → 37AC/15 = 74 → AC = 30cm 
thế vào (1) và (2) ta được AB = 10cm, BC = 24cm

AH
Akai Haruma
Giáo viên
26 tháng 12 2022

Bài 1:

$BC=2S_{ABC}: AH=2.24:6=8$ (cm)

AH
Akai Haruma
Giáo viên
26 tháng 12 2022

Bài 2:

Tam giác $ABC$ cân tại $A$ nên phân giác $AD$ đồng thời là đường cao

$\Rightarrow AD\perp DC$. Mà $\widehat{DAC}=\widehat{BAC}:2 =45^0$ nên $\triangle DAC$ vuông cân tại $D$

$\Rightarrow DA=DC(1)$

$D,E$ đối xứng với nhau qua $AC$ nên $AC$ là trung trực của $DE$

$\Rightarrow CD=CE; AD=AE(2)$
Từ $(1); (2)\Rightarrow AD=DC=CE=EA$

$\Rightarrow ADCE$ là hình thoi.

Mà $\widehat{ADC}=90^0$ nên $ADCE$ là hình vuông.

1: AB=20cm

=>AB=2dm

=>\(\dfrac{AB}{CD}=\dfrac{2}{4}=\dfrac{1}{2}\)

2: Xét ΔHNM vuông tại H và ΔMNP vuông tại M có

\(\widehat{N}\) chung

Do đó: ΔHNM đồng dạng với ΔMNP

Xét ΔHPM vuông tại H và ΔMPN vuông tại M có

\(\widehat{P}\) chung

Do đó: ΔHPM đồng dạng với ΔMPN

Xét ΔHMN vuông tại H và ΔHPM vuông tại H có

\(\widehat{HMN}=\widehat{P}\left(=90^0-\widehat{N}\right)\)

Do đó: ΔHMN~ΔHPM

Câu 3:

ΔDEF~ΔMNP

=>\(\widehat{E}=\widehat{N}\) và \(\dfrac{DE}{MN}=k\)

Xét ΔDHE vuông tại H và ΔMIN vuông tại I có

\(\widehat{E}=\widehat{N}\)

Do đó: ΔDHE đồng dạng với ΔMIN

=>\(\dfrac{DH}{MI}=\dfrac{DE}{MN}=k\)