Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
a, \(\Delta AHF\&\Delta CHD\)Có:
\(\widehat{AHF}=\widehat{CHD}\left(đv\right),\widehat{AFH}=\widehat{CDH}=90^o\)
\(\Rightarrow\Delta AHF\infty\Delta CHD\left(g.g\right)\)
\(\Rightarrow\frac{HA}{HC}=\frac{HF}{HD}\Rightarrow HA.HD=HC.HF\)
b, Sửa N thành B
\(\Delta BAD\&\Delta BCF\)Có:
\(\widehat{B}chung,\widehat{D}=\widehat{F}=90^o\)
\(\Rightarrow\Delta BAD\infty\Delta BCF\left(g.g\right)\)
\(\Rightarrow\frac{BA}{BC}=\frac{BD}{BF}\Rightarrow BF.BA=BD.BC\)
c,Vì \(\frac{BA}{BC}=\frac{BD}{BF}\Rightarrow\frac{BD}{BA}=\frac{BF}{BC}\)
\(\Delta BFD\&\Delta BCA\)Có:
\(\widehat{B}chung,\frac{BF}{BC}=\frac{BD}{BA}\)
\(\Rightarrow\)\(\Delta BFD\infty\Delta BCA\left(c.g.c\right)\)
\(\Rightarrow\widehat{BFD}=\widehat{BCA}\)
d, chưa nghĩ ra
Câu hỏi của Ngọc Duyên DJ - Toán lớp 8 - Học toán với OnlineMath
câu trả lời đã được đăng cách đây 2 ngày nhé
Hình bạn tự vẽ nha
a, Xét \(\Delta AHF\) và \(\Delta CHD\) có
\(\widehat{HFA}\)=\(\widehat{HDC}\)=\(90^o\)
\(\widehat{AHF}=\widehat{CHD}\)(đối đỉnh)
\(\Rightarrow\Delta AHF\infty\Delta CHD\)( g-g)
\(\Rightarrow\frac{AH}{CH}=\frac{HF}{HD}\)\(\Rightarrow AH\cdot HD=CH\cdot HF\)
a: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
góc FHB=góc EHC
=>ΔHFB đồng dạng với ΔHEC
Xét ΔFBH vuông tại F và ΔFCA vuông tại F có
góc FBH=góc FCA
=>ΔFBH đồng dạng vơi ΔFCA
=>FH/FA=BH/AC
=>FH*AC=BH*FA
b: Xét tứ giác BHCK có
I là trung điểm chung của BC và HK
=>BHCK là hình bình hành
=>CK//BH
=>CK vuông góc AC
=>AK là đường kính của (O)
Xet ΔAKC vuông tại C và ΔAHF vuông tại F có
góc AKC=góc AHF(=góc ABD)
=>ΔAKC đồng dạng với ΔAHF
hình bạn tự vẽ nha
a, Xét \(\Delta AHF\)và \(\Delta CHD\)có
\(\widehat{AHF}=\widehat{CHD}\)(đối đỉnh)
\(\widehat{AFH}=\widehat{CDH}=90^o\)
\(\Rightarrow\Delta AHF\infty\Delta CHD\left(g\cdot g\right)\)\(\Rightarrow\frac{AH}{CH}=\frac{HF}{HD}\)\(\Rightarrow HA\cdot HD=HC\cdot HF\)
Bài 1:
a) Xét tam giác ABE và tam giác ACF có:
Góc AEB=góc AFC(=90 độ)
Góc A chung
=>Tam giác ABE đồng dạng vs tam giác ACF (g-g)
b)
Vì tam giác ABE đồng dạng vs tam giác ACF(cmt)
=>\(\frac{AB}{AC}=\frac{AE}{AF}\)
Xét tam giác AFE và tam giác ACB có:
Góc A chung(gt)
\(\frac{AB}{AC}=\frac{AE}{AF}\)
=>Tam giác AFE và tam giác ACB đồng dạng (c-g-c)
c)
H ở đou ra vại? :))