K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
2 tháng 3 2021

1.

Gọi $L$ là giao $BM, CN$ thì $L$ là trọng tâm tam giác $ABC$.

Áp dụng công thức đường trung tuyến:

$BM^2=\frac{c^2+a^2}{2}-\frac{b^2}{4}$

$CN^2=\frac{a^2+b^2}{2}-\frac{c^2}{4}$$BL^2=\frac{4}{9}BM^2=\frac{2}{9}(c^2+a^2)-\frac{1}{9}b^2$

$NL^2=\frac{1}{9}CN^2=\frac{1}{18}(a^2+b^2)-\frac{1}{36}c^2$

Theo cong thức Pitago:

$BN^2=BL^2+NL^2$

$\Rightarrow \frac{c^2}{4}=\frac{2}{9}(c^2+a^2)-\frac{1}{9}b^2+\frac{1}{18}(a^2+b^2)-\frac{1}{36}c^2$

$\Rightarrow $5a^2=b^2+c^2$ hay $b^2+c^2=45$

Áp dụng công thức cos:

$a^2=b^2+c^2-2bc\cos A=b^2+c^2-\sqrt{3}bc$

$\Rightarrow 9=45-\sqrt{3}bc\Rightarrow bc=12\sqrt{3}$

$S_{ABC}=\frac{1}{2}bc\sin A=\frac{1}{2}.12\sqrt{3}.\sin 30=3\sqrt{3}$

Đáp án A.

 

 

 

$b=

 

AH
Akai Haruma
Giáo viên
2 tháng 3 2021

2.

\(R_{ABC}=\frac{abc}{4S_{ABC}}=\frac{3bc}{4S}=\frac{3.12\sqrt{3}}{4.3\sqrt{3}}=3\)

Đáp án B.

NV
12 tháng 9 2021

Tam giác ABC là tam giác đều?

Nếu ABC đều thì \(\left|\overrightarrow{BM}\right|=BM=\dfrac{a\sqrt{3}}{2}\)

Chọn C

25 tháng 11 2018

Bn lm đc câu này chưa ak. Nếu bn lm r thì chụp mk xem vs nhé

Chọn B

27 tháng 2 2021

B

27 tháng 2 2021

Đáp án B nha

AH
Akai Haruma
Giáo viên
13 tháng 3 2021

Lời giải:

Theo BĐT Bunhiacopxky ta có:

$M^2=(\sin A+\sqrt{3}\cos A)^2\leq (\sin ^2A+\cos ^2A)(1+3)=1.4=4$

$\Rightarrow -2\leq M\leq 2$

Do đó $M$ không thể nhận giá trị $2\sqrt{3}$ vì $2\sqrt{3}>2$

Đáp án C.

8 tháng 2 2022

Câu A

12 tháng 5 2022

use mot cay gay

NV
30 tháng 4 2021

\(\dfrac{A}{2}+\dfrac{B}{2}=\dfrac{\pi}{2}-\dfrac{C}{2}\Rightarrow tan\left(\dfrac{A}{2}+\dfrac{B}{2}\right)=tan\left(\dfrac{\pi}{2}-\dfrac{C}{2}\right)\)

\(\Rightarrow\dfrac{tan\dfrac{A}{2}+tan\dfrac{B}{2}}{1-tan\dfrac{A}{2}tan\dfrac{B}{2}}=cot\dfrac{C}{2}=\dfrac{1}{tan\dfrac{C}{2}}\)

\(\Rightarrow tan\dfrac{A}{2}.tan\dfrac{C}{2}+tan\dfrac{B}{2}tan\dfrac{C}{2}=1-tan\dfrac{A}{2}tan\dfrac{B}{2}\)

\(\Rightarrow tan\dfrac{A}{2}tan\dfrac{B}{2}+tan\dfrac{B}{2}tan\dfrac{C}{2}+tan\dfrac{C}{2}tan\dfrac{A}{2}=1\)

Ta có:

\(tan\dfrac{A}{2}+tan\dfrac{B}{2}+tan\dfrac{C}{2}\ge\sqrt{3\left(tan\dfrac{A}{2}tan\dfrac{B}{2}+tan\dfrac{B}{2}tan\dfrac{C}{2}+tan\dfrac{C}{2}tan\dfrac{A}{2}\right)}=\sqrt{3}\)

Dấu "=" xảy ra khi và chỉ khi \(A=B=C\) hay tam giác ABC đều

19 tháng 5 2017

Tích vô hướng của hai vectơ và ứng dụng

Tích vô hướng của hai vectơ và ứng dụng

1 tháng 5 2022

`a)` Vì `AM` là đường trung tuyến của `\triangle ABC`

`=>M` là trung điểm của `BC`

`=> M ( 1 ; -2 )`

Ta có: `\vec{AM} = ( -1 ; -2 )`

    `=>\vec{n_[AM]} = ( 2 ; -1 )`

      Mà `A ( 2 ; 0 ) in AM`

`=>` Ptr đường trung tuyến `AM` là: `2 ( x - 2 ) - ( y - 0 ) = 0`

                                       `<=> 2x - y - 4 = 0`

________________________________________________________

`b)` Ta có: `\vec{AC} = ( -2 ; -1 )`

Gọi ptr đường thẳng vuông góc với `AC` là `\Delta`

  `=>` Ptr `\Delta` là: `-2x - y + c = 0`

  `d ( B , \Delta ) = \sqrt{5}`

`=> [ | -2 . 2 - (-3) + c | ] / \sqrt{(-2)^2 + (-1)^2} = \sqrt{5}`

`<=> | c - 1 | = 5`

`<=> c = 6` hoặc `c = -4`

  `=>` Ptr `\Delta` là: `-2x - y + 6 = 0`

                          hoặc `-2x - y - 4 = 0`