Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( sửa F thành O nha bạn )
a. xét tam giác ABM và tam giác ACN có
AB = AC ( ABC cân )
góc B = góc C ( ABC cân )
BM = CN ( gt )
Vậy tam giác ABM = tam giác ACN ( c.g.c )
b,c,d. xét tam giác vuông BHM và tam giác vuông CKN có:
góc B = góc C ( ABC cân )
BM = CN ( gt )
Vậy tam giác vuông BHM = tam giác vuông CKN ( cạnh huyền . góc nhọn )
=> MH = NK ( 2 cạnh tương ứng )
=> BH = CK ( 2 cạnh tương ứng )
Kẻ AE vuông với BC
=> AE vuông BC (1)
ta có: AH = AK ( ABC cân, BH = CK ( cmt ) )
=> tam giác AHK cân ( câu c )
Mà A là đường cao của tam giác ABC cũng là đường cao tam giác AHK => AO là phân giác góc BAC ( câu d )
=> AO vuông HK (2)
Từ (1) và (2) => HK // BC ( 2 cạnh cùng vuông với cạnh thứ 3 ) ( câu b )
e. Áp dụng định lí pitago vào tam giác vuông BMH, có:
\(BM^2=MH^2+BH^2\)
\(BM^2=3^2+4^2=\sqrt{9+16}=\sqrt{25}=5cm\)
BM = 5cm
Mà BM = MN = NC ( gt )
=> BC = BM + MN + NC = 5 +5 + 5 =15 cm
=> BC =15 cm
Sửa đề: góc AMC vuông
Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
a: Xét ΔADB và ΔADE có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó:ΔADB=ΔADE
b: Ta có: ΔADB=ΔADE
nên AB=AE và BD=ED
=>AD là đường trung trực của BE
c: Xét ΔDBF và ΔDEC có
\(\widehat{DBF}=\widehat{DEC}\)
DB=DE
\(\widehat{BDF}=\widehat{EDC}\)
Do đo: ΔDBF=ΔDEC
d: XétΔABC có AD là phân giác
nên BD/AB=CD/AC
mà AB<AC
nên BD<CD
Kẻ đường cao \(AH\).
Xét tam giác vuông \(AHB\)có: \(AB>BH\)(cạnh huyền lớn hơn cạnh góc vuông).
Xét tam giác vuông \(AHC\)có: \(AC>CH\)(cạnh huyền lớn hơn cạnh góc vuông).
Suy ra \(AB+AC>BH+CH=BC\).