Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(sin^3A.sin\left(B-C\right)=sin^2A.sinA.sin\left(B-C\right)\)
\(=sin^2A.sin\left(B+C\right).sin\left(B-C\right)=-\frac{1}{2}sin^2A\left(cos2B-cos2C\right)\)
\(=-\frac{1}{2}sin^2A\left(1-2sin^2B-1+2sin^2C\right)=sin^2A.sin^2B-sin^2A.sin^2C\)
Bài 2:
a: Xét ΔOHA vuông tại A và ΔOHB vuông tại B có
OH chung
\(\widehat{AOH}=\widehat{BOH}\)
Do đó: ΔOHA=ΔOHB
Suy ra: HA=HB
hay ΔHAB cân tại H
b: Xét ΔOAB có
OH là đường cao
AD là đường cao
OH cắt AD tại C
Do đó: C là trực tâm của ΔOAB
Suy ra: BC\(\perp\)Ox
c: \(\widehat{HOA}=\dfrac{60^0}{2}=30^0\)
Xét ΔOHA vuông tại A có
\(\cos HOA=\dfrac{OA}{OH}\)
\(\Leftrightarrow OA=\dfrac{\sqrt{3}}{2}\cdot4=2\sqrt{3}\left(cm\right)\)
1: Xét tứ giác AEHF có \(\widehat{AEH}+\widehat{AFH}=180^0\)
nên AEHF là tứ giác nội tiếp
2: Xét ΔCDA vuông tại D và ΔCEB vuông tại E có
\(\widehat{DCA}\) chung
Do đó: ΔCDA\(\sim\)ΔCEB
Suy ra: CD/CE=CA/CB
hay \(CD\cdot CB=CA\cdot CE\)
Lời giải:
Ta có:
$\sin 2A+\sin 2B=2\sin \frac{2A+2B}{2}\cos \frac{2A-2B}{2}=2\sin (A+B)\cos (A-B)$
$=2\sin (\pi -C)\cos (A-B)=2\sin C\cos (A-B) $
Do đó:
$\sin 2A+\sin 2B+\sin 2C=\sin 2C+2\sin C\cos (A-B)=2\sin C\cos C+2\sin C\cos (A-B)$
$=2\sin C[\cos C+\cos (A-B)]=2\sin C[\cos (\pi -A-B)+\cos (A-B)]$
$=2\sin C[\cos (A-B)-\cos (A+B)]=-2.\sin C[\cos (A+B)-\cos (A-B)]$
$=-2\sin C. (-2).\sin \frac{(A+B)+(A-B)}{2}.\sin \frac{(A+B)-(A-B)}{2}=4\sin C.\sin A.\sin B$
Ta có đpcm.
a: XétΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
\(\widehat{ABE}=\widehat{HBE}\)
Do đó: ΔBAE=ΔBHE
b: Ta có: ΔBAE=ΔBHE
nên BA=BH và EA=EH
=>BE là đường trung trực của AH
c: Xét ΔAEK vuông tại A và ΔHEC vuông tại H có
EA=EH
\(\widehat{AEK}=\widehat{HEC}\)
Do đó: ΔAEK=ΔHEC
Suy ra: EK=EC
\(4m_a^2=b\left(b+4c.cosA\right)=b^2+4bc.cosA\)
\(\Leftrightarrow4\left(\dfrac{2b^2+2c^2-a^2}{4}\right)=b^2+4bc.\dfrac{b^2+c^2-a^2}{2bc}\)
\(\Leftrightarrow2b^2+2c^2-a^2=b^2+2\left(b^2+c^2-a^2\right)\)
\(\Leftrightarrow a^2=b^2\)
\(\Leftrightarrow a=b\)
\(\Rightarrow\Delta ABC\) cân tại C