K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

loading...  loading...  loading...  

29 tháng 10 2021

Xét tam giác ABC nhọn có \(BC^2=AB^2+AC^2-2AB\cdot AC\cdot\cos\widehat{A}\)
\(\Rightarrow\cos\widehat{A}=\dfrac{AB^2+AC^2-BC^2}{2AB\cdot AC}=\dfrac{AB^2+AC^2-BC^2}{4\cdot\dfrac{1}{2}AB\cdot AC}=\dfrac{AB^2+AC^2-BC^2}{4S_{ABC}}\)

Cmtt: \(\left\{{}\begin{matrix}\cos\widehat{B}=\dfrac{AB^2+BC^2-AC^2}{4S_{ABC}}\\\cos\widehat{C}=\dfrac{AC^2+BC^2-AB^2}{4S_{ABC}}\end{matrix}\right.\)
\(\Rightarrow\cos\widehat{A}+\cos\widehat{B}+\cos\widehat{C}\\ =\dfrac{AB^2+AC^2-BC^2+AB^2+BC^2-AC^2+AC^2+BC^2-AB^2}{4S_{ABC}}\\ =\dfrac{AB^2+AC^2+BC62}{4S_{ABC}}\)

25 tháng 9 2019

Tham khảo nha !!!Untitled.png

undefined

15 tháng 4 2017

Ta có bất phương trình tương đương:

\(\Leftrightarrow x-2\left(\cos B+\cos C\right)x+2-2\cos A\ge0\)

Ta có:

\(\Delta'=\left(\cos B+\cos C\right)^2-2+2\cos A\)

\(=4\cos^2\left(\frac{B+C}{2}\right).\cos^2\left(\frac{B-C}{2}\right)-4\sin^2\left(\frac{A}{2}\right)\)

 \(=4\sin^2\left(\frac{A}{2}\right)\left(\cos^2\left(\frac{B-C}{2}\right)-1\right)\le0\)

Bên cạnh đó ta có hệ số \(a=1>0\)

Từ đây ta suy ra điều phải chứng minh là đúng.

NV
25 tháng 2 2020

\(\Delta ABC\) đều \(\Rightarrow A=B=C=60^0\)

\(\Rightarrow cosA+cosB+cosC=3cos60^0=\frac{3}{2}\)

27 tháng 12 2016

bc(b2-c2)cosA+ca(c2-a2)cosB+ba(a2-b2)cosC

\(\frac{\left(b^2-c^2\right)\left(b^2+c^2-a^2\right)}{2}+\frac{\left(c^2-a^2\right)\left(c^2+a^2-b^2\right)}{2}+\frac{\left(a^2-b^2\right)\left(a^2+b^2-c^2\right)}{2}\)

Giờ nhân mấy cái đấy vô rồi rút gọn là nó bằng 0 đó

27 tháng 12 2016

chẳng hiểu gì cả