Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(h=\sqrt{b^2-\frac{a^2}{4}}\Rightarrow S=\frac{1}{2}ah=\frac{1}{2}a\sqrt{b^2-\frac{a^2}{4}}\)
\(R=\frac{abb}{4S}=\frac{ab^2}{\sqrt{4b^2-a^2}.a}=\frac{b^2}{\sqrt{4b^2-a^2}}\)
\(r=\frac{S}{p}=\frac{a\sqrt{b^2-\frac{a^2}{4}}}{a+2b}\)
a: Bán kính là \(\dfrac{c}{2}\)
b: Bán kính là \(\dfrac{a\sqrt{2}}{2}\)
a, tam giác ABC vuông tại B có góc A = 30 độ => AC = 2 BC = 2. 3 = 6 cm
theo định lí Pytago ta có AB = \(\sqrt{ÃC^2-BC^2}=\sqrt{6^2-3^2}\) = \(3\sqrt{3}\) cm
góc C = 90 - 30 = 60 độ
b, tam giác ABH vuông tại H có góc A = 30 độ => AB = 2 BH => BH = \(\frac{3\sqrt{3}}{2}\)cm
theo định lí Pytago ta có AH = \(\sqrt{AB^2-BH^2}=\sqrt{\left(3\sqrt{3}\right)^2-\left(\frac{3\sqrt{3}}{2}\right)^2}=4,5cm\)
diện tích tam giác ABH =\(\frac{1}{2}.BH.AH=\frac{1}{2}.\frac{3\sqrt{3}}{2}.4,5=\frac{27\sqrt{3}}{8}\)cm vuông
A B C D 4 6 H O
Kéo dài đường cao AH cắt đường tròn ngoại tiếp tam giác ABC tại D . Gọi O là tâm đường tròn ngoại tiếp tam giác ABC
Vì tam giác ABC cân tại A nên AHlà đường trung trực của BC . Nên AD là đường trung trực của BC .
Khi đó O thuộc AD hay AD là đường kính của đường tròn ngoại tiếp tam giác ABC
Tam giác ACD nội tiếp trong (O ) có AD là đường khính suy ra \(\widehat{ACD=90}\)độ
Tam giác ACD vuông tại C nên theo hệ thức liên hệ giữa đường cao và hình chiếu , ta có :
\(CH^2=HA.HD\)
\(\Rightarrow\)\(HD=\frac{CH^2}{HA}=\frac{\left(\frac{BC}{2}\right)^2}{HA}=\frac{\left(\frac{12}{2}^2\right)}{4}=\frac{6^2}{4}=9cm\)
Ta có \(AD=AH+HD=4+9=13\left(cm\right)\)
Vậy bán kính của đường tròn (O ) là :
\(R=\frac{AD}{2}=\frac{13}{2}=6,5\left(cm\right)\)
Chúc bạn học tốt !!!
(Hình)
Diện tích tam giác ABC là:
SABC = 1/2 . AH . BC = 1/2 . 4 . 12 = 24 (cm2)
Vì tam giác ABC cân tại A nên đường cao AH là trung tuyến BC
Nên : BH= HC= 1/2. BC= 1/2 . 12 = 6 (cm)
Trong tam giác AHB:
Áp dụng ĐL pi-ta-go:
AB2 = AH2 + BH2
AB2 = 42 + 62
AB= \(2\sqrt{13}\) (cm)
Vì tam giác ABC cân tại A nên : AB = AC = \(2\sqrt{13}\) (cm)
Ta có : SABC =\(\frac{AB\cdot AC\cdot BC}{4R}\) (R là bán kính đường tòn ngoại tiếp tam giác ABC)
<=> \(24=\frac{2\sqrt{13}.2\sqrt{13}.12}{4R}\)
<=> R= \(\frac{13}{2}\) (cm)
OK
a) Đường cao BH = CK = a
BC = a/sinα
Kẻ đg cao AD ⇒ BD = DC = a/2sinα
⇒ AD = BD.tanα = sinα/cosα . a/2sinα = a/2cosα
AB = AC = AD/sinα = a/2sinαcosα = a/sin2α
b) Dễ dàng có đc S = pr
⇒ r = S/p = AD.BC/2AB+BC = a/2+2cosα
S = AB.BC.CA/4R
⇒ R = AB.BC.CA/4S = a/2sin22α.cosα