K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2021

Bạn tự vẽ hình

`a)`Xét tam giác MNP cân có:MI là trung tuyến

`=>` MI là đường cao

`=>MI bot NP`

`b)` Xét tam giác vuông MIQ và tam giác vuông MIK có:

`MI` chung

`hat{NMI}=hat{PMI}`

`=>DeltaMIQ=DeltaMIK(ch-gn)`

`=>IQ=IK(1)`

`DeltaMIQ=DeltaMIK(ch-gn)`

`=>MQ=MK(2)`

`(1)(2)=>IM` là trung trực QK

7 tháng 6 2021

Bài khá dài, bạn đọc không hiểu cứ hỏi mình nha!

undefined

9 tháng 2 2020

a, xét tam giác QIN và tam giác NKQ có L QN chung

góc MQN = góc MNQ do tam giác MNQ cân tại M (gT)

góc QIN = góc NKQ = 90

=> tam giác QIN = tam giác NKQ (ch-gn)

b,  tam giác QIN = tam giác NKQ (Câu a)

=> QI = NK (đn)

QI + MI = MQ

NK + MK = MN 

MN = MQ do tam giác MNQ cân tại M (gt)

=> MI = MK 

=> tam giác MIK cân tại M (đn)

c, xét tam giác MIH  và tam giác MKH có : MH chung

IM = MK (Câu b)

góc MIH = gics MKH = 90

=> tam giác MIH = tam giác MKH (ch-cgv)

d, tam giác MIK cân tại M (Câu b)=> góc MIK = (180 - góc IMK) : 2(tc)

tam giác MNQ cân tại M (gt) => gics MQN = (190 - góc IMK) : 2(tc)

=> góc MIK = góc MQN mà 2 góc này đồng vị

=> IK // QN (tc)

9 tháng 2 2020

M N Q K I H

a. Vì \(\Delta MNQ\) cân tại M => \(MN=MQ,\widehat{MQN}=\widehat{MNQ}\)

Xét 2 tam giác vuông là \(\Delta NIQ\) và \(\Delta QKN\) ta có:

Cạnh chung NQ, \(\widehat{KNQ}=\widehat{IQN}\) ( vì \(\widehat{MNQ}=\widehat{MQN}\) )

\(\Rightarrow\Delta NIQ=\Delta QKN\)( cạnh huyền - góc nhọn )

b. Vì \(\Delta NIQ=\Delta QKN\Rightarrow IQ=KN\) ( 2 cạnh tương ứng )

Mà \(MN=MQ\Rightarrow MN-NK=MQ-IQ\Rightarrow MK=MI\)

\(\Rightarrow\Delta MKI\) cân tại M. ( ĐPCM )

c. Xét 2 tam giác vuông là \(\Delta MKH\) và \(\Delta MIH\) ta có:

\(MK=MI\left(cmt\right)\) và cạnh chung MH

\(\Rightarrow\Delta MKH=\Delta MIH\) ( cạnh huyền - cạnh góc vuông )

a: Xét ΔABM vuông tại M và ΔACN vuông tại N có

AB=AC

\(\widehat{BAM}\) chung

Do đó: ΔABM=ΔACN

Suy ra: AM=AN

b: Xét ΔAMN có AM=AN

nên ΔAMN cân tại A

21 tháng 1 2022

a) Xét tam giác BNC vuông tại N và tam giác CMB vuông tại M:

BC chung.

\(\widehat{B}=\widehat{C}\) (Tam giác ABC cân tại A).

=> Tam giác BNC = Tam giác CMB (cạnh huyền - góc nhọn).

=> BN = CM (2 cạnh tương ứng).

Ta có: AB = AN + BN; AC = AM + CM.

Mà AB = AC (Tam giác ABC cân tại A); BN = CM (cmt).

=> AM = AN.

b) Xét tam giác AMN: AM = AN (cmt).

=> Tam giác AMN cân tại A.

c) Xét tam giác ABC: 

BM; CN là đường cao (BM vuông góc với AC; CN vuông góc với AB).

I là giao điểm của BM và CN (gt).

=> I là trực tâm.

=> AI là đường cao.

Mà AI là đường cao xuất phát từ đỉnh A của tam giác ABC cân tại A.

=> AI là đường phân giác góc A (Tính chất các đường trong tam giác cân).

16 tháng 11 2018

a, xét tam giác mnq và tam giác meq có

góc nmq=góc qme ( gt)

mn=me(gt)

mq chung

=> tam giác mnq=  tam giác meq(c.g.c)

=>NQ = QE(2 cạnh tg ứng)

20 tháng 11 2018

cảm ơn bạn nhìu nha!!!!

a)

Xét ΔMIH vuông tại H và ΔMIK vuông tại K có 

MI chung

\(\widehat{HMI}=\widehat{KMI}\)(MI là tia phân giác của \(\widehat{HMK}\))

Do đó: ΔMIH=ΔMIK(Cạnh huyền-góc nhọn)

b) 

Xét ΔMIN và ΔMIP có 

MN=MP(ΔMNP cân tại M)

\(\widehat{NMI}=\widehat{PMI}\)(MI là tia phân giác của \(\widehat{NMP}\))

MI chung

Do đó: ΔMIN=ΔMIP(c-g-c)

Suy ra: IN=IP(hai cạnh tương ứng)

Ta có: MN=MP(ΔMNP cân tại M)

nên M nằm trên đường trung trực của NP(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: IN=IP(cmt)

nên I nằm trên đường trung trực của NP(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra MI là đường trung trực của NP(đpcm)

c) Ta có: ΔMHI=ΔMKI(cmt)

nên IH=IK(hai cạnh tương ứng)

Xét ΔIHK có IH=IK(cmt)

nên ΔIHK cân tại I(Định nghĩa tam giác cân)

8 tháng 7 2021

Tham khảo cái gì thế nhỉ?