Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa lại đề : A < 90*
a, Chứng minh
\(\Delta ABD=\Delta ACE\left(c.g.c\right)\)
\(\RightarrowĐPCM\)
b, CM được :
\(\widehat{ADE}\)\(=\)\(\widehat{ACB}\)\(=\)\(\frac{180'-\widehat{BAC}}{2}\)
\(\Rightarrow DE//BC\)
c, CM được : \(\widehat{IBC}=\widehat{ICB}\)
\(\RightarrowĐPCM\)
d, Gọi M là giao điểm của AI và BC ,
CM được AI là tia phân giác của góc \(\widehat{BAC}\), từ đó \(\widehat{AMB}\)\(=90'\)
\(\RightarrowĐPCM\)
a ) Xét tam giác ABD và tam giác ACE có :
AB = AC ( tam giác ABC cân )
Góc BAC chung
ADB = AEC ( = 90 độ )
=> tam giác ABD = tam giác ACE ( cạnh huyền góc nhọn )
=> AD = AE
Xét tam giác AEH và tam giác ADH có :
AE = AD
AEH = ADH ( = 90 độ )
AH chung
=> tam giác AEH = tam giác ADH ( ch cgv )
=> góc EAH = góc DAH
hay góc BAI = góc CAI
Xét tam giác BAI và tam giác CAI có :
AB = AC
góc BAI = góc CAI
AI chung
=> tam giác BAI = tam giác CAI
=> AIB = AIC
MÀ AIB + AIC = 180 độ ( kề bù )
=> AI vuông góc BC
hay AH vuông góc BC
bạn ơi bạn có nhầm đề không sao góc A < 900??? Bạn xem lại đề nhé
a: Xét ΔBEC vuông tại E và ΔCDB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)
Do đó:ΔBEC=ΔCDB
b: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó:ΔABD=ΔACE
Suy ra: AD=AE
c: Ta có: ΔBEC=ΔCDB
nên \(\widehat{IBC}=\widehat{ICB}\)
hayΔIBC cân tại I
Xét ΔABI và ΔACI có
AB=AC
AI chung
BI=CI
Do đó:ΔABI=ΔACI
Suy ra: \(\widehat{BAI}=\widehat{CAI}\)
hay AI là tia phân giác của góc BAC
d: Xét ΔABC có AE/AB=AD/AC
nên DE//BC
a: Sửa đề: góc A<90 độ
a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
góc EBC=góc DCB
=>ΔEBC=ΔDCB
b: ΔEBC=ΔDCB
=>góc KBC=góc KCB
=>KB=KC
KB+KD=BD
KC+KE=EC
mà BD=CE và KB=KC
nên KD=KE
c: Xét ΔAEK vuông tại E và ΔADK vuông tại D có
AK chung
KE=KD
=>ΔAEK=ΔADK
=>góc EAK=góc DAK
=>AK là phân giác của góc BAC
d: AB=AC
KB=KC
=>AK là trung trực của BC
=>A,K,I thẳng hàng