Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:a)
$M$ là trung điểm $AB$. $E$ đối xứng với $D$ qua $M$ nên $M$ là trung điểm $DE$. Như vậy, xét tứ giác $ADBE$ có 2 đường chéo $AB$ và $ED$ cắt nhau tại trung điểm $M$ của chính nó nên $ADBE$ là hình bình hành. Mà $\widehat{D}=90^0$ nên $ADBE$ là hình chữ nhật.
b)
Vì $ADBE$ là hình chữ nhật nên $AE=BD$ và $AE\parallel BD$.
$ABC$ cân tại $A$ nên đường cao $AD$ đồng thời là đường trung tuyến. Do đó $BD=DC$
Suy ra $AE\parallel DC$ và $AE=DC$. Do đó $ACDE$ là hình bình hành.
c)
Ta thấy: $MD=\frac{1}{2}AC$ (tính chất đường trung bình)
$MB=\frac{1}{2}AB=\frac{1}{2}AC$
$\Rightarrow MB=MD\Rightarrow \widehat{MBD}=\widehat{MDB}$
$\Rightarrow 180^0-\widehat{MBD}=180^0-\widehat{MDB}$
$\Leftrightarrow \widehat{KBC}=\widehat{MDC}$
Xét tam giác $KBC$ và $MDC$ có:
$\widehat{KBC}=\widehat{MDC}$ (cmt)
$\frac{KB}{BC}=\frac{AB}{BC}=\frac{\frac{AB}{2}}{\frac{BC}{2}}=\frac{MD}{DC}$
$\Rightarrow \triangle KBC\sim \triangle MDC$ (c.g.c)
$\Rightarrow \frac{KC}{MC}=\frac{BC}{DC}=2$
$\Rightarrow KC=2MC$ (đpcm)
Hình bạn có thể tự vẽ nha
a) Tứ giác AMCK là hình gì?Vì sao?
M,K đối xứng nhau qua I
=> I là trung điểm của MK (1)
I là trung điểm của AC (gt)(2)
(1)(2)=> AMCK là hình bình hành (3)
Tam giác ABC cân tại A có: AM là trung tuyến (gt)
=> AM vừa là trung tuyến vừa là đường cao (t/c)
=>AM vuông góc với BC
=> Góc BMC=90(4)
(3)(4)=> AMCK là hình chữ nhật(dhnb)
b) C/m ABEC là hình thoi:
AM=ME(gt)(5)
M nằm giữa A và E(6)
(5)(6)=>M là trung điểm AE(7)
M là trung điểm BC(8)
(7)(8)=> ABEC là hình bình hành(9)
AM vuông góc với BC,M thuộc AE=>AE vuông góc với BC(10)
(9)(10)=> ABEC là hình thoi (dhnb)
a) Tam giác ABC cân tại A có AM là đường trung tuyến
=> AM cũng là đường cao
=> AM⊥BC
Tứ giác AMCK có : I là trung điểm của đường chéo MK
I là trung điểm của đường chéo AC
=> AMCK là hình bình hành
mà góc AMC bằng 90 độ
=> AMCK là hình chữ nhật
b) Ta có: AK =MC ( 2 cạnh đối trong hình chữ nhật)
mà MC=MB ( M là trung điểm của BC)
=> AK=MB
Ta có: AK//MC( 2 cạnh đối trong hình chữ nhật)
mà MC và MB là 2 tia đối
=> AK//MB
Tứ giác AKBM có: AK=MB
AK//MB
=> AKBM là hình bình hành
c) Tứ giác ABEC có: M là trung điểm của đường chéo AE
M là trung điểm của đường chéo BC
=> ABEC là hình bình hành
mà AE⊥BC( cmt)
=> ABEC là hình thoi
a: Xét tứ giác AMCK có
I là trung điểm chung của AC và MK
góc AMC=90 độ
Do dó: AMCK là hình chữ nhật
b: Xét tứ giác ABEC có
M là trung điểm chung của AE và BC
AB=AC
Do đó: ABEC là hình thoi
a:Xét ΔCAM có
CK là đường cao
CK là đường trung tuyến
Do đó: ΔCAM cân tại C
Đề sai rồi bạn