K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2023

Sửa đề: Chứng minh MN//AC

Ta có: AN là phân giác của góc BAC
=>\(\widehat{BAN}=\dfrac{1}{2}\cdot\widehat{BAC}\left(1\right)\)

CM là phân giác của góc BCA

=>\(\widehat{BCM}=\dfrac{1}{2}\cdot\widehat{BCA}\left(2\right)\)

ΔBAC cân tại B

=>\(\widehat{BAC}=\widehat{BCA}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\widehat{BAN}=\widehat{BCM}\)

Xét ΔBAN và ΔBCM có

\(\widehat{BAN}=\widehat{BCM}\)

BA=BC

\(\widehat{ABN}\) chung

Do đó: ΔBAN=ΔBCM

=>BN=BM

Xét ΔBAC có \(\dfrac{BM}{BA}=\dfrac{BN}{BC}\)

nên MN//AC

a)Xét tam giác ABM và tam giác BCN có:

+AB=CB(Theo D/lí tam giác cân)

+Góc B chung

+AM=CN(Vì là hai cạnh tương ứng của hai tam giác bằng nhau)

=> Tam giác ABM=BCN(theo t.hợp C.G.C)\

Vậy tam giác ABM=tam giác BCN

a) Xét ΔBMN và ΔCMA có 

\(\widehat{MBN}=\widehat{MCA}\)(hai góc so le trong, AC//NB)

\(\widehat{BMN}=\widehat{CMA}\)(hai góc đối đỉnh)

Do đó: ΔBMN∼ΔCMA(g-g)

b) Ta có: ΔBMN∼ΔCMA(cmt)

nên \(\dfrac{MN}{MA}=\dfrac{MB}{MC}\)(Các cặp cạnh tương ứng tỉ lệ)(1)

Xét ΔABC có AM là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{AB}{AC}=\dfrac{BM}{CM}\)(Tính chất đường phân giác của tam giác)(2)

Từ (1) và (2) suy ra \(\dfrac{AB}{AC}=\dfrac{MN}{MA}\)(đpcm)

21 tháng 4 2021

a, Xét hai tam giác ABM và CBM có:

\(\widehat{B}\) là góc chung

\(\dfrac{AB}{BC}=\dfrac{NB}{MB}\) ( Do tam giác ABC  cân tại B)

=> tam giác ABM đồng dạng tam giác CBM (c.g.c)

21 tháng 4 2021

b, Do tam giác ABM∼ tam giác CBN  nên ta có tỉ lệ:

\(\dfrac{BM}{BC}=\dfrac{BN}{AB}\) => MN // AC (đpcm)

25 tháng 4 2016

hình như bạn chép sai đề bài rồi.sao lại AB=6cm,AB=8cm là sao?

25 tháng 4 2016

Đó chỉ là số đo thôi, bỏ qua nó đi. Câu a của mình là tính BC.

13 tháng 4 2021
Câu c là MA.MP = MB.MN nhé