Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=5^2-3^2=16\)
hay AC=4(cm)
Vậy: AC=4cm
b) Xét ΔABC có AE là tia phân giác ứng với cạnh BC(gt)
nên \(\dfrac{BE}{AB}=\dfrac{CE}{AC}\)(Tính chất tia phân giác của tam giác)
hay \(\dfrac{BE}{3}=\dfrac{CE}{4}\)
mà BE+CE=BC=5cm(gt)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BE}{3}=\dfrac{CE}{4}=\dfrac{BE+CE}{3+4}=\dfrac{BC}{7}=\dfrac{5}{7}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{BE}{3}=\dfrac{5}{7}\\\dfrac{CE}{4}=\dfrac{5}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BE=\dfrac{15}{7}\left(cm\right)\\CE=\dfrac{20}{7}\left(cm\right)\end{matrix}\right.\)
Vậy: \(BE=\dfrac{15}{7}cm;CE=\dfrac{20}{7}cm\)
a: cos ACD=CD/AC=1/2
=>góc ACD=60 độ
CB=12/căn 3=4căn 3
b: CE*CF=CA^2
CD*CB=CA^2
=>CE*CF=CD*CB
: Gọi I là giao điểm của AD và phân giác CE.
Xét hai tam giác AIC và DIC có góc DCI = góc ACI, góc CID = góc CIA = 90 độ
suy ra góc IDC = góc IAC. Do đó tam giác CAD cân tại C --> AC = DC = BC/2.
CosC = (BC^2 + AC^2 - AB^2)/(2 AC.BC)= 1/4 (Dựa vào gt AB = BC, C/m trên AC = BC/2).
: Gọi I là giao điểm của AD và phân giác CE.
Xét hai tam giác AIC và DIC có góc DCI = góc ACI, góc CID = góc CIA = 90 độ
suy ra góc IDC = góc IAC. Do đó tam giác CAD cân tại C --> AC = DC = BC/2.
CosC = (BC^2 + AC^2 - AB^2)/(2 AC.BC)= 1/4 (Dựa vào gt AB = BC, C/m trên AC = BC/2).