Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc B=90-30=60 độ
b: Xét ΔBAM vuông tại A và ΔBHM vuông tại H có
BM chung
góc ABM=góc HBM
=>ΔBAM=ΔBHM
c: Xét ΔBAH có BA=BH và góc ABH=60 độ
nên ΔABH đều
d: Xét ΔMBC có góc MBC=góc MCB=30 độ
nên ΔMBC cân tại M
e: BA=BH
MA=MH
=>BM là trung trực của AH
a: Ta có: \(\widehat{BMA}+\widehat{ABM}=90^0\)
\(\widehat{BMD}+\widehat{DBM}=90^0\)
mà \(\widehat{ABM}=\widehat{DBM}\)
nên \(\widehat{BMA}=\widehat{BMD}\)
c: Xét ΔBAM vuông tại A và ΔBDM vuông tại D có
BM chung
\(\widehat{ABM}=\widehat{DBM}\)
Do đó: ΔBAM=ΔBDM
Suy ra: MA=MD
Xét ΔAME vuông tại A và ΔDMC vuông tại D có
MA=MD
\(\widehat{AME}=\widehat{DMC}\)
Do đó: ΔAME=ΔDMC
a: Xét ΔBAM và ΔBEM có
BA=BE
góc ABM=góc EBM
BM chung
=>ΔBAM=ΔBEM
=>góc BAM=góc BEM=90 độ
=>ME vuông góc BC
b: ME=MA
mà MA<MF
nên ME<MF
c: ΔMAE có MA=ME
nên ΔMAE cân tại M
nhớ tk cho ming nha
1, Xét tam giác ABC có :
\(BC^2=AC^2+AB^2\)
\(\Leftrightarrow BC^2=4^2+3^2\)
\(\Leftrightarrow BC^2=25\)
\(\Leftrightarrow BC=5\left(cm\right)\)
2,Ta có :\(\widehat{BMA}+\widehat{MBA}=90^O\)
\(\widehat{BMH}+\widehat{MBH}=90^O\)
MÀ \(\widehat{ABM}=\widehat{HBM}\)
Nên \(\widehat{BMA}=\widehat{BMH}\)
Xét tam giác ABM và tam giác HBM có :
\(\widehat{ABM}=\widehat{HBM}\left(gt\right)\)
\(BMchung\)
\(\widehat{BMA}=\widehat{BMH}\)
\(\Rightarrow\Delta BAM=\Delta BHM\left(c.g.c\right)\)
3,Vì \(\Delta BAM=\Delta BHM\Rightarrow AM=MH\left(1\right)\)
Xét \(\Delta HMC\)có :
\(\widehat{MHC}=90^0\)
Suy ra :MC>MH(2)
Từ (1) và(2):AM<MC
4,Ta có :\(\widehat{AMH}+\widehat{HMC}=180^0\left(1\right)\)
Xét tam giác NMA và tam giác CMH có:
\(HC=NA\)
\(\widehat{NAM}=\widehat{CHM}\)
\(MA=MH\left(\Delta BAM=\Delta BHM\right)\)
\(\Rightarrow\Delta NMA=\Delta CMH\left(c.g.c\right)\)
\(\Rightarrow\widehat{NMA}=\widehat{CMH}\)(2)
Từ (1) và(2) : => N,M,H thẳng hàng
a) Vì tam giác ABC là tam giác cân nên tia phân giác của góc B cũng là đường cao của tam giác ABC => góc BMC = góc BMA
Xét tam giác BMA và tam giác BMC, ta có:
Góc BMA = góc BMC ( cmt )
AB = CB ( gt )
Góc ABM = Góc CBM ( gt )
Vậy tam giác BMA = tam giác BMC ( cạnh huyền góc nhọn )
b) Theo câu a đã chứng minh, tia phân giác của góc B cũng là đường cao của tam giác ABC. Vậy góc BMC = góc BMA
c) Câu này chắc AB = 8cm mà bạn ghi nhầm AC = 8cm
Áp dụng đính lý Pi - ta - go vào tam giác ABM, ta có:
AM2 + BM2 = AB2
52 + BM2 = 82
BM2 = 82 - 52
BM2 = 39
BM gần = 6
a) Do tam giác ABC cân tại B và BM là đường phân giác của góc B nên
BM là đường cao,đường trung tuyến,và đường trung trực của,đường cao của tam giác ABC(tính chất tam giác cân)
Xét tam giác BMA và tam giác BMC có
BA=BC(vì tam giác ABC cân tại B)
Góc BMA=góc BMC=90 độ(vì BM là đường cao của tam giác ABC)
Cạnh chung BM
Suy ra tam giác BMA= tam giác BMC(cạnh huyền-cạnh góc vuông)
b) Vì BM là đường cao của tam giác ABC nên
Góc BMA=BMC=90 độ
c) Do BM là đường trung trực của tam giác ABC nên(cmt ở câu a)
Nên AM=CM=8:2=4 CM
Áp dụng định lí Py-ta-go vào tam giác vuông ABM có
AB^2=AM^2+BM^2
Hay 5^2+BM^2=8^2
25+BM^2=64
BM^2=64-25=39
BM= căn bậc hai của 39=xấp xỉ 6
Vậy BM=~6