Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ACBM có
BM//AC
AM//BC
Do đó: ACBM là hình bình hành
b: Xét tứ giác ABDE có góc AEB=góc BDA=góc EBD=90 độ
nên ABDE là hình chữ nhật
c: Xét tứ giác ABCK có
D là trung điểm chung của AC và BK
nên ABCK là hình bình hành
mà BA=BC
nên ABCK là hình thoi
a/ Tứ giác ABCD có:
- AM=MD (gt)
- MB=MC (gt)
=> Tứ giác ABCD là hình bình hành
Do △ABC là tam giác cân suy ra AM vừa là trung tuyến vừa là đường cao hay AM⊥BC
=> ABCD là hình thoi (đpcm)
b/ Hình thoi ABCD (cmt) có AC//BD => CF//BD => AF//BD (1)
Mặt khác ta có: AD⊥BC ; BF⊥BC => AD//BF (2)
AF và BD cùng cắt AD và BF (3)
Từ (1), (2), (3):
Vậy tứ giác ADBF là hình bình hành (đpcm)
a) Xét tứ giác ABDC có
M là trung điểm của đường chéo BC(gt)
M là trung điểm của đường chéo AD(A và D đối xứng với nhau qua M)
Do đó: ABDC là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành ABDC có AB=AC(ΔABC cân tại A)
nên ABDC là hình thoi(Dấu hiệu nhận biết hình thoi)
a) Tứ giác BHCkBHCk có 2 đường chéo BCBC và HKHK cắt nhau tại trung điểm MM của mỗi đường
⇒BHCK⇒BHCK là hình bình hành.
b) BHCKBHCK là hình bình hành ⇒BK∥HC⇒BK∥HC
Mà HC⊥ABHC⊥AB
⇒BK⊥AB⇒BK⊥AB (đpcm)
c) Do II đối xứng với HH qua BC⇒IH⊥BCBC⇒IH⊥BC mà HD⊥BC,D∈BCHD⊥BC,D∈BC
⇒I⇒I đối xứng với HH qua D⇒DD⇒D là trung điểm của HIHI
Và MM là trung điểm của HKHK
⇒DM⇒DM là đường trung bình ΔHIKΔHIK
⇒DM∥IK⇒DM∥IK
⇒BC∥IK⇒BC∥IK
⇒BCKI⇒BCKI là hình thang
ΔCHIΔCHI có CDCD vừa là đường cao vừa là đường trung tuyến
⇒ΔCHI⇒ΔCHI cân đỉnh CC
⇒CI=CH⇒CI=CH (*)
Mà tứ giác BHCKBHCK là hình bình hành ⇒CH=BK⇒CH=BK (**)
Từ (*) và (**) suy ra CI=BKCI=BK
Tứ giác BCKIBCKI là hình bình hành có 2 đường chéo CI=BKCI=BK
Suy ra BCIKBCIK là hình thang cân.
Tứ giác HGKCHGKC có GK∥HCGK∥HC (do BHCKBHCK là hình bình hành)
⇒HGKC⇒HGKC là hình thang có đáy là GK∥HCGK∥HC
...
a, xét tứ giác ACBM có: BM // AC (gt) và AM // BC (gt)
=> ACBM là hình bình hành (đn)
b, BE // AD (gt)
BD _|_ AD (gt)
=> BE _|_ AD (đl)
=> ^EBD = 90 = ^BDA = ^AEB
=> ADBE là hình chữ nhật (dh)
c, Tam giác ABC cân tại B (gt) ; BD là đường cao (gt)
=> BD là trung tuyến của tam giác ABC (đl)
=> D là trung điểm của AC (Đn)
D là trung điểm của BK do B đối xứng với K qua D (Gt)
=> BAKC là hình bình hành (dh)
mà BD _|_ AC (Gt)
=> BAKC là hình thoi (dh)
d, có BAKC là hình thoi (câu c)
=> AK // BC (tc)
AM // BC (gt)
=> A; M; K thẳng hàng (tiên đề Ơclit) (1)
AK = BC do BAKC là hình thoi (câu c)
AM = BC do ACBM là hình bình hành (câu a)
=> AM = MK và (1)
=> A là trung điểm của KM (đn)
=> M đối xứng với K qua A (đn)
e, BMKC là hình thang (KM // BC)
để BMKC là hình thang cân
<=> ^BMK = ^MKC (dh)
^BMK = ^BCA do BMAC là hình bình hành (câu a)
^AKC = ^CBK do AKCB là hình thoi (câu c)
<=> ^ABC = ^ACB
mà tam giác ABC cân tại B (Gt)
<=> tam giác ABC đều